License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.FSTTCS.2022.13
URN: urn:nbn:de:0030-drops-174054
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/17405/
Go to the corresponding LIPIcs Volume Portal


Chung, Jaehoon ; Bae, Sang Won ; Shin, Chan-Su ; Yoon, Sang Duk ; Ahn, Hee-Kap

Inscribing or Circumscribing a Histogon to a Convex Polygon

pdf-format:
LIPIcs-FSTTCS-2022-13.pdf (0.9 MB)


Abstract

We consider two optimization problems of approximating a convex polygon, one by a largest inscribed histogon and the other by a smallest circumscribed histogon. An axis-aligned histogon is an axis-aligned rectilinear polygon such that every horizontal edge has an integer length. A histogon of orientation θ is a copy of an axis-aligned histogon rotated by θ in counterclockwise direction. The goal is to find a largest inscribed histogon and a smallest circumscribed histogon over all orientations in [0,π). Depending on whether the horizontal width of a histogon is predetermined or not, we consider several different versions of the problem and present exact algorithms. These optimization problems belong to shape analysis, classification, and simplification, and they have applications in various cost-optimization problems.

BibTeX - Entry

@InProceedings{chung_et_al:LIPIcs.FSTTCS.2022.13,
  author =	{Chung, Jaehoon and Bae, Sang Won and Shin, Chan-Su and Yoon, Sang Duk and Ahn, Hee-Kap},
  title =	{{Inscribing or Circumscribing a Histogon to a Convex Polygon}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{13:1--13:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/17405},
  URN =		{urn:nbn:de:0030-drops-174054},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.13},
  annote =	{Keywords: Shape simplification, Shape analysis, Histogon, Convex polygon}
}

Keywords: Shape simplification, Shape analysis, Histogon, Convex polygon
Collection: 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)
Issue Date: 2022
Date of publication: 14.12.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI