License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CSL.2023.8
URN: urn:nbn:de:0030-drops-174694
Go to the corresponding LIPIcs Volume Portal

Barenbaum, Pablo ; Bonelli, Eduardo

Reductions in Higher-Order Rewriting and Their Equivalence

LIPIcs-CSL-2023-8.pdf (0.7 MB)


Proof terms are syntactic expressions that represent computations in term rewriting. They were introduced by Meseguer and exploited by van Oostrom and de Vrijer to study equivalence of reductions in (left-linear) first-order term rewriting systems. We study the problem of extending the notion of proof term to higher-order rewriting, which generalizes the first-order setting by allowing terms with binders and higher-order substitution. In previous works that devise proof terms for higher-order rewriting, such as Bruggink’s, it has been noted that the challenge lies in reconciling composition of proof terms and higher-order substitution (β-equivalence). This led Bruggink to reject "nested" composition, other than at the outermost level. In this paper, we propose a notion of higher-order proof term we dub rewrites that supports nested composition. We then define two notions of equivalence on rewrites, namely permutation equivalence and projection equivalence, and show that they coincide.

BibTeX - Entry

  author =	{Barenbaum, Pablo and Bonelli, Eduardo},
  title =	{{Reductions in Higher-Order Rewriting and Their Equivalence}},
  booktitle =	{31st EACSL Annual Conference on Computer Science Logic (CSL 2023)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-264-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{252},
  editor =	{Klin, Bartek and Pimentel, Elaine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-174694},
  doi =		{10.4230/LIPIcs.CSL.2023.8},
  annote =	{Keywords: Term Rewriting, Higher-Order Rewriting, Proof terms, Equivalence of Computations}

Keywords: Term Rewriting, Higher-Order Rewriting, Proof terms, Equivalence of Computations
Collection: 31st EACSL Annual Conference on Computer Science Logic (CSL 2023)
Issue Date: 2023
Date of publication: 01.02.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI