License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2023.29
URN: urn:nbn:de:0030-drops-175321
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/17532/
Go to the corresponding LIPIcs Volume Portal


Buhrman, Harry ; Linden, Noah ; Mančinska, Laura ; Montanaro, Ashley ; Ozols, Maris

Quantum Majority Vote

pdf-format:
LIPIcs-ITCS-2023-29.pdf (0.4 MB)


Abstract

Majority vote is a basic method for amplifying correct outcomes that is widely used in computer science and beyond. While it can amplify the correctness of a quantum device with classical output, the analogous procedure for quantum output is not known. We introduce quantum majority vote as the following task: given a product state |ψ_1⟩ ⊗ … ⊗ |ψ_n⟩ where each qubit is in one of two orthogonal states |ψ⟩ or |ψ^⟂⟩, output the majority state. We show that an optimal algorithm for this problem achieves worst-case fidelity of 1/2 + Θ(1/√n). Under the promise that at least 2/3 of the input qubits are in the majority state, the fidelity increases to 1 - Θ(1/n) and approaches 1 as n increases.
We also consider the more general problem of computing any symmetric and equivariant Boolean function f: {0,1}ⁿ → {0,1} in an unknown quantum basis, and show that a generalization of our quantum majority vote algorithm is optimal for this task. The optimal parameters for the generalized algorithm and its worst-case fidelity can be determined by a simple linear program of size O(n). The time complexity of the algorithm is O(n⁴ log n) where n is the number of input qubits.

BibTeX - Entry

@InProceedings{buhrman_et_al:LIPIcs.ITCS.2023.29,
  author =	{Buhrman, Harry and Linden, Noah and Man\v{c}inska, Laura and Montanaro, Ashley and Ozols, Maris},
  title =	{{Quantum Majority Vote}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{29:1--29:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/17532},
  URN =		{urn:nbn:de:0030-drops-175321},
  doi =		{10.4230/LIPIcs.ITCS.2023.29},
  annote =	{Keywords: quantum algorithms, quantum majority vote, Schur-Weyl duality}
}

Keywords: quantum algorithms, quantum majority vote, Schur-Weyl duality
Collection: 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)
Issue Date: 2023
Date of publication: 01.02.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI