License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2023.63
URN: urn:nbn:de:0030-drops-175660
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/17566/
Go to the corresponding LIPIcs Volume Portal


Grandoni, Fabrizio ; Mathieu, Claire ; Zhou, Hang

Unsplittable Euclidean Capacitated Vehicle Routing: A (2+ε)-Approximation Algorithm

pdf-format:
LIPIcs-ITCS-2023-63.pdf (0.7 MB)


Abstract

In the unsplittable capacitated vehicle routing problem, we are given a metric space with a vertex called depot and a set of vertices called terminals. Each terminal is associated with a positive demand between 0 and 1. The goal is to find a minimum length collection of tours starting and ending at the depot such that the demand of each terminal is covered by a single tour (i.e., the demand cannot be split), and the total demand of the terminals in each tour does not exceed the capacity of 1.
Our main result is a polynomial-time (2+ε)-approximation algorithm for this problem in the two-dimensional Euclidean plane, i.e., for the special case where the terminals and the depot are associated with points in the Euclidean plane and their distances are defined accordingly. This improves on recent work by Blauth, Traub, and Vygen [IPCO'21] and Friggstad, Mousavi, Rahgoshay, and Salavatipour [IPCO'22].

BibTeX - Entry

@InProceedings{grandoni_et_al:LIPIcs.ITCS.2023.63,
  author =	{Grandoni, Fabrizio and Mathieu, Claire and Zhou, Hang},
  title =	{{Unsplittable Euclidean Capacitated Vehicle Routing: A (2+\epsilon)-Approximation Algorithm}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{63:1--63:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/17566},
  URN =		{urn:nbn:de:0030-drops-175660},
  doi =		{10.4230/LIPIcs.ITCS.2023.63},
  annote =	{Keywords: capacitated vehicle routing, approximation algorithms, Euclidean plane}
}

Keywords: capacitated vehicle routing, approximation algorithms, Euclidean plane
Collection: 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)
Issue Date: 2023
Date of publication: 01.02.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI