License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2023.71
URN: urn:nbn:de:0030-drops-175746
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/17574/
Go to the corresponding LIPIcs Volume Portal


Hitron, Yael ; Parter, Merav ; Yogev, Eylon

Secure Distributed Network Optimization Against Eavesdroppers

pdf-format:
LIPIcs-ITCS-2023-71.pdf (0.8 MB)


Abstract

We present a new algorithmic framework for distributed network optimization in the presence of eavesdropper adversaries, also known as passive wiretappers. In this setting, the adversary is listening to the traffic exchanged over a fixed set of edges in the graph, trying to extract information on the private input and output of the vertices. A distributed algorithm is denoted as f-secure, if it guarantees that the adversary learns nothing on the input and output for the vertices, provided that it controls at most f graph edges.
Recent work has presented general simulation results for f-secure algorithms, with a round overhead of D^Θ(f), where D is the diameter of the graph. In this paper, we present a completely different white-box, and yet quite general, approach for obtaining f-secure algorithms for fundamental network optimization tasks. Specifically, for n-vertex D-diameter graphs with (unweighted) edge-connectivity Ω(f), there are f-secure congest algorithms for computing MST, partwise aggregation, and (1+ε) (weighted) minimum cut approximation, within Õ(D+f √n) congest rounds, hence nearly tight for f = Õ(1).
Our algorithms are based on designing a secure algorithmic-toolkit that leverages the special structure of congest algorithms for global optimization graph problems. One of these tools is a general secure compiler that simulates light-weight distributed algorithms in a congestion-sensitive manner. We believe that these tools set the ground for designing additional secure solutions in the congest model and beyond.

BibTeX - Entry

@InProceedings{hitron_et_al:LIPIcs.ITCS.2023.71,
  author =	{Hitron, Yael and Parter, Merav and Yogev, Eylon},
  title =	{{Secure Distributed Network Optimization Against Eavesdroppers}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{71:1--71:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/17574},
  URN =		{urn:nbn:de:0030-drops-175746},
  doi =		{10.4230/LIPIcs.ITCS.2023.71},
  annote =	{Keywords: congest, secure computation, network optimization}
}

Keywords: congest, secure computation, network optimization
Collection: 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)
Issue Date: 2023
Date of publication: 01.02.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI