License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2023.88
URN: urn:nbn:de:0030-drops-175913
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/17591/
Go to the corresponding LIPIcs Volume Portal


Pasarkar, Amol ; Papadimitriou, Christos ; Yannakakis, Mihalis

Extremal Combinatorics, Iterated Pigeonhole Arguments and Generalizations of PPP

pdf-format:
LIPIcs-ITCS-2023-88.pdf (0.8 MB)


Abstract

We study the complexity of computational problems arising from existence theorems in extremal combinatorics. For some of these problems, a solution is guaranteed to exist based on an iterated application of the Pigeonhole Principle. This results in the definition of a new complexity class within TFNP, which we call PLC (for "polynomial long choice"). PLC includes all of PPP, as well as numerous previously unclassified total problems, including search problems related to Ramsey’s theorem, the Sunflower theorem, the Erdős-Ko-Rado lemma, and König’s lemma. Whether the first two of these four problems are PLC-complete is an important open question which we pursue; in contrast, we show that the latter two are PPP-complete. Finally, we reframe PPP as an optimization problem, and define a hierarchy of such problems related to Turàn’s theorem.

BibTeX - Entry

@InProceedings{pasarkar_et_al:LIPIcs.ITCS.2023.88,
  author =	{Pasarkar, Amol and Papadimitriou, Christos and Yannakakis, Mihalis},
  title =	{{Extremal Combinatorics, Iterated Pigeonhole Arguments and Generalizations of PPP}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{88:1--88:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/17591},
  URN =		{urn:nbn:de:0030-drops-175913},
  doi =		{10.4230/LIPIcs.ITCS.2023.88},
  annote =	{Keywords: Total Complexity, Extremal Combinatorics, Pigeonhole Principle}
}

Keywords: Total Complexity, Extremal Combinatorics, Pigeonhole Principle
Collection: 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)
Issue Date: 2023
Date of publication: 01.02.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI