License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.OPODIS.2022.2
URN: urn:nbn:de:0030-drops-176221
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/17622/
Go to the corresponding LIPIcs Volume Portal


Fatourou, Panagiota

Recoverable Computing (Invited Talk)

pdf-format:
LIPIcs-OPODIS-2022-2.pdf (0.3 MB)


Abstract

Non-Volatile Memory (NVM) is an emerging memory technology which aims to address the high computational demands of modern applications and support recovery from crashes. Recovery ensures that after a crash every executed operation is able to recover and return a correct response. This talk will shed light on different aspects of the question "How does concurrent computing change in systems with NVM and what will the impact of persistent memory be on the way we compute?". Specifically, this talk addresses the following four main challenges in NVM computing.
- Challenge 1: How to appropriately model and abstract fundamental aspects of NVM computing? The talk will provide an overview of the theoretical framework for NVM computing, including a discussion of correctness conditions, progress guarantees, failure types, etc.
- Challenge 2: How to compute in a recoverable way at no significant cost? The talk will summarize state-of-the-art generic approaches for deriving recoverable synchronization algorithms, as well as recoverable implementations of many widely-used concurrent data structures on top of them. The collection of data structures includes fundamental structures, such as stacks and queues, but also more complex structures that implement sets, such as linked-lists and trees.
- Challenge 3: How to analyze the cost of recoverable algorithms? The talk will present a way of analyzing the cost of persistence instructions, not by simply counting them but by separating them into categories based on the impact they have on the performance. This analysis reveals that understanding the actual persistence cost of an algorithm in machines with NVM, is more complicated than previously thought, and requires a thorough evaluation, since the performance impact of different persistence instructions may greatly vary.
- Challenge 4: When is Recoverable Consensus Harder Than Consensus? The talk will briefly discuss the ability of different shared object types to solve recoverable consensus using NVM when processes crash and recover, and it will compare the difficulty of solving recoverable consensus to the difficulty of solving the standard consensus problem in a system with halting failures. For each of the above challenges, the talk will present main results, provide some of the details of the best-performing techniques, and discuss open problems and directions for further research. Some of the results that will be discussed in detail have appeared in [Attiya et al., 2022; Delporte-Gallet et al., 2022; Fatourou et al., 2022].

BibTeX - Entry

@InProceedings{fatourou:LIPIcs.OPODIS.2022.2,
  author =	{Fatourou, Panagiota},
  title =	{{Recoverable Computing}},
  booktitle =	{26th International Conference on Principles of Distributed Systems (OPODIS 2022)},
  pages =	{2:1--2:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-265-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{253},
  editor =	{Hillel, Eshcar and Palmieri, Roberto and Rivi\`{e}re, Etienne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/17622},
  URN =		{urn:nbn:de:0030-drops-176221},
  doi =		{10.4230/LIPIcs.OPODIS.2022.2},
  annote =	{Keywords: non-volatile memory, persistence, detectability, durability, recoverable algorithms, recoverable data structures, persistent objects, stacks, queues, heaps, synchronization, universal constructions, software combining, lock-freedom, wait-freedom, persistence cost analysis}
}

Keywords: non-volatile memory, persistence, detectability, durability, recoverable algorithms, recoverable data structures, persistent objects, stacks, queues, heaps, synchronization, universal constructions, software combining, lock-freedom, wait-freedom, persistence cost analysis
Collection: 26th International Conference on Principles of Distributed Systems (OPODIS 2022)
Issue Date: 2023
Date of publication: 15.02.2023
Supplementary Material: Text (Slides of the Talk): https://sites.uclouvain.be/OPODIS2022/


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI