License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2023.27
URN: urn:nbn:de:0030-drops-178771
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/17877/
Despré, Vincent ;
Kolbe, Benedikt ;
Parlier, Hugo ;
Teillaud, Monique
Computing a Dirichlet Domain for a Hyperbolic Surface
Abstract
This paper exhibits and analyzes an algorithm that takes a given closed orientable hyperbolic surface and outputs an explicit Dirichlet domain. The input is a fundamental polygon with side pairings. While grounded in topological considerations, the algorithm makes key use of the geometry of the surface. We introduce data structures that reflect this interplay between geometry and topology and show that the algorithm runs in polynomial time, in terms of the initial perimeter and the genus of the surface.
BibTeX - Entry
@InProceedings{despre_et_al:LIPIcs.SoCG.2023.27,
author = {Despr\'{e}, Vincent and Kolbe, Benedikt and Parlier, Hugo and Teillaud, Monique},
title = {{Computing a Dirichlet Domain for a Hyperbolic Surface}},
booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)},
pages = {27:1--27:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-273-0},
ISSN = {1868-8969},
year = {2023},
volume = {258},
editor = {Chambers, Erin W. and Gudmundsson, Joachim},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2023/17877},
URN = {urn:nbn:de:0030-drops-178771},
doi = {10.4230/LIPIcs.SoCG.2023.27},
annote = {Keywords: Hyperbolic geometry, Topology, Voronoi diagram, Algorithm}
}
Keywords: |
|
Hyperbolic geometry, Topology, Voronoi diagram, Algorithm |
Collection: |
|
39th International Symposium on Computational Geometry (SoCG 2023) |
Issue Date: |
|
2023 |
Date of publication: |
|
09.06.2023 |