License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2023.44
URN: urn:nbn:de:0030-drops-178946
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/17894/
Go to the corresponding LIPIcs Volume Portal


Jain, Rahul ; Ricci, Marco ; Rollin, Jonathan ; Schulz, André

On the Geometric Thickness of 2-Degenerate Graphs

pdf-format:
LIPIcs-SoCG-2023-44.pdf (1 MB)


Abstract

A graph is 2-degenerate if every subgraph contains a vertex of degree at most 2. We show that every 2-degenerate graph can be drawn with straight lines such that the drawing decomposes into 4 plane forests. Therefore, the geometric arboricity, and hence the geometric thickness, of 2-degenerate graphs is at most 4. On the other hand, we show that there are 2-degenerate graphs that do not admit any straight-line drawing with a decomposition of the edge set into 2 plane graphs. That is, there are 2-degenerate graphs with geometric thickness, and hence geometric arboricity, at least 3. This answers two questions posed by Eppstein [Separating thickness from geometric thickness. In Towards a Theory of Geometric Graphs, vol. 342 of Contemp. Math., AMS, 2004].

BibTeX - Entry

@InProceedings{jain_et_al:LIPIcs.SoCG.2023.44,
  author =	{Jain, Rahul and Ricci, Marco and Rollin, Jonathan and Schulz, Andr\'{e}},
  title =	{{On the Geometric Thickness of 2-Degenerate Graphs}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{44:1--44:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/17894},
  URN =		{urn:nbn:de:0030-drops-178946},
  doi =		{10.4230/LIPIcs.SoCG.2023.44},
  annote =	{Keywords: Degeneracy, geometric thickness, geometric arboricity}
}

Keywords: Degeneracy, geometric thickness, geometric arboricity
Collection: 39th International Symposium on Computational Geometry (SoCG 2023)
Issue Date: 2023
Date of publication: 09.06.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI