License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2023.54
URN: urn:nbn:de:0030-drops-179047
Go to the corresponding LIPIcs Volume Portal

Qi, Benjamin ; Qi, Richard

New Approximation Algorithms for Touring Regions

LIPIcs-SoCG-2023-54.pdf (0.8 MB)


We analyze the touring regions problem: find a (1+ε)-approximate Euclidean shortest path in d-dimensional space that starts at a given starting point, ends at a given ending point, and visits given regions R₁, R₂, R₃, … , R_n in that order.
Our main result is an O (n/√ε log{1/ε} + 1/ε)-time algorithm for touring disjoint disks. We also give an O(min(n/ε, n²/√ε))-time algorithm for touring disjoint two-dimensional convex fat bodies. Both of these results naturally generalize to larger dimensions; we obtain O(n/{ε^{d-1}} log²1/ε + 1/ε^{2d-2}) and O(n/ε^{2d-2})-time algorithms for touring disjoint d-dimensional balls and convex fat bodies, respectively.

BibTeX - Entry

  author =	{Qi, Benjamin and Qi, Richard},
  title =	{{New Approximation Algorithms for Touring Regions}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{54:1--54:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-179047},
  doi =		{10.4230/LIPIcs.SoCG.2023.54},
  annote =	{Keywords: shortest paths, convex bodies, fat objects, disks}

Keywords: shortest paths, convex bodies, fat objects, disks
Collection: 39th International Symposium on Computational Geometry (SoCG 2023)
Issue Date: 2023
Date of publication: 09.06.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI