License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2023.64
URN: urn:nbn:de:0030-drops-179146
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/17914/
Chubet, Oliver A. ;
Macnichol, Paul ;
Parikh, Parth ;
Sheehy, Donald R. ;
Sheth, Siddharth S.
Greedy Permutations and Finite Voronoi Diagrams (Media Exposition)
Abstract
We illustrate the computation of a greedy permutation using finite Voronoi diagrams. We describe the neighbor graph, which is a sparse graph data structure that facilitates efficient point location to insert a new Voronoi cell. This data structure is not dependent on a Euclidean metric space. The greedy permutation is computed in O(nlog Δ) time for low-dimensional data using this method [Sariel Har-Peled and Manor Mendel, 2006; Donald R. Sheehy, 2020].
BibTeX - Entry
@InProceedings{chubet_et_al:LIPIcs.SoCG.2023.64,
author = {Chubet, Oliver A. and Macnichol, Paul and Parikh, Parth and Sheehy, Donald R. and Sheth, Siddharth S.},
title = {{Greedy Permutations and Finite Voronoi Diagrams}},
booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)},
pages = {64:1--64:5},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-273-0},
ISSN = {1868-8969},
year = {2023},
volume = {258},
editor = {Chambers, Erin W. and Gudmundsson, Joachim},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2023/17914},
URN = {urn:nbn:de:0030-drops-179146},
doi = {10.4230/LIPIcs.SoCG.2023.64},
annote = {Keywords: greedy permutation, Voronoi diagrams}
}
Keywords: |
|
greedy permutation, Voronoi diagrams |
Collection: |
|
39th International Symposium on Computational Geometry (SoCG 2023) |
Issue Date: |
|
2023 |
Date of publication: |
|
09.06.2023 |
Supplementary Material: |
|
Audiovisual: https://youtu.be/zMlpHV6Y1SM |