License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SAND.2023.5
URN: urn:nbn:de:0030-drops-179414
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/17941/
Go to the corresponding LIPIcs Volume Portal


Ani, Joshua ; Coulombe, Michael ; Demaine, Erik D. ; Diomidov, Yevhenii ; Gomez, Timothy ; Hendrickson, Dylan ; Lynch, Jayson

Complexity of Motion Planning of Arbitrarily Many Robots: Gadgets, Petri Nets, and Counter Machines

pdf-format:
LIPIcs-SAND-2023-5.pdf (1 MB)


Abstract

We extend the motion-planning-through-gadgets framework to several new scenarios involving various numbers of robots/agents, and analyze the complexity of the resulting motion-planning problems. While past work considers just one robot or one robot per player, most of our models allow for one or more locations to spawn new robots in each time step, leading to arbitrarily many robots. In the 0-player context, where all motion is deterministically forced, we prove that deciding whether any robot ever reaches a specified location is undecidable, by representing a counter machine. In the 1-player context, where the player can choose how to move the robots, we prove equivalence to Petri nets, EXPSPACE-completeness for reaching a specified location, PSPACE-completeness for reconfiguration, and ACKERMANN-completeness for reconfiguration when robots can be destroyed in addition to spawned. Finally, we consider a variation on the standard 2-player context where, instead of one robot per player, we have one robot shared by the players, along with a ko rule to prevent immediately undoing the previous move. We prove this impartial 2-player game EXPTIME-complete.

BibTeX - Entry

@InProceedings{ani_et_al:LIPIcs.SAND.2023.5,
  author =	{Ani, Joshua and Coulombe, Michael and Demaine, Erik D. and Diomidov, Yevhenii and Gomez, Timothy and Hendrickson, Dylan and Lynch, Jayson},
  title =	{{Complexity of Motion Planning of Arbitrarily Many Robots: Gadgets, Petri Nets, and Counter Machines}},
  booktitle =	{2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)},
  pages =	{5:1--5:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-275-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{257},
  editor =	{Doty, David and Spirakis, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/17941},
  URN =		{urn:nbn:de:0030-drops-179414},
  doi =		{10.4230/LIPIcs.SAND.2023.5},
  annote =	{Keywords: Gadgets, robots, undecidability, Petri nets}
}

Keywords: Gadgets, robots, undecidability, Petri nets
Collection: 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)
Issue Date: 2023
Date of publication: 12.06.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI