License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ECRTS.2023.2
URN: urn:nbn:de:0030-drops-180313
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18031/
Go to the corresponding LIPIcs Volume Portal


Baruah, Sanjoy ; Ekberg, Pontus

Towards Efficient Explainability of Schedulability Properties in Real-Time Systems

pdf-format:
LIPIcs-ECRTS-2023-2.pdf (0.9 MB)


Abstract

The notion of efficient explainability was recently introduced in the context of hard-real-time scheduling: a claim that a real-time system is schedulable (i.e., that it will always meet all deadlines during run-time) is defined to be efficiently explainable if there is a proof of such schedulability that can be verified by a polynomial-time algorithm. We further explore this notion by (i) classifying a variety of common schedulability analysis problems according to whether they are efficiently explainable or not; and (ii) developing strategies for dealing with those determined to not be efficiently schedulable, primarily by identifying practically meaningful sub-problems that are efficiently explainable.

BibTeX - Entry

@InProceedings{baruah_et_al:LIPIcs.ECRTS.2023.2,
  author =	{Baruah, Sanjoy and Ekberg, Pontus},
  title =	{{Towards Efficient Explainability of Schedulability Properties in Real-Time Systems}},
  booktitle =	{35th Euromicro Conference on Real-Time Systems (ECRTS 2023)},
  pages =	{2:1--2:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-280-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{262},
  editor =	{Papadopoulos, Alessandro V.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18031},
  URN =		{urn:nbn:de:0030-drops-180313},
  doi =		{10.4230/LIPIcs.ECRTS.2023.2},
  annote =	{Keywords: Recurrent Task Systems, Uniprocessor and Multiprocessor Schedulability, Verification, Explanation, Computational Complexity, Approximation Schemes}
}

Keywords: Recurrent Task Systems, Uniprocessor and Multiprocessor Schedulability, Verification, Explanation, Computational Complexity, Approximation Schemes
Collection: 35th Euromicro Conference on Real-Time Systems (ECRTS 2023)
Issue Date: 2023
Date of publication: 03.07.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI