License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2023.2
URN: urn:nbn:de:0030-drops-180543
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18054/
Go to the corresponding LIPIcs Volume Portal


Kyng, Rasmus

An Almost-Linear Time Algorithm for Maximum Flow and More (Invited Talk)

pdf-format:
LIPIcs-ICALP-2023-2.pdf (0.4 MB)


Abstract

In this talk, I will explain a new algorithm for computing exact maximum and minimum-cost flows in almost-linear time, settling the time complexity of these basic graph problems up to subpolynomial factors.
Our algorithm uses a novel interior point method that builds the optimal flow as a sequence of approximate minimum-ratio cycles, each of which is computed and processed very efficiently using a new dynamic data structure.
By well-known reductions, our result implies almost-linear time algorithms for several problems including bipartite matching, optimal transport, and undirected vertex connectivity. Our framework also extends to minimizing general edge-separable convex functions to high accuracy, yielding the first almost-linear time algorithms for many other problems including entropy-regularized optimal transport, matrix scaling, p-norm flows, and isotonic regression.
This talk is based on joint work with Li Chen, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva [Chen et al., 2022]. Our result appeared in FOCS'22 and won the FOCS best paper award.

BibTeX - Entry

@InProceedings{kyng:LIPIcs.ICALP.2023.2,
  author =	{Kyng, Rasmus},
  title =	{{An Almost-Linear Time Algorithm for Maximum Flow and More}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18054},
  URN =		{urn:nbn:de:0030-drops-180543},
  doi =		{10.4230/LIPIcs.ICALP.2023.2},
  annote =	{Keywords: Maximum flow, Minimum cost flow, Data structures, Interior point methods, Convex optimization}
}

Keywords: Maximum flow, Minimum cost flow, Data structures, Interior point methods, Convex optimization
Collection: 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
Issue Date: 2023
Date of publication: 05.07.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI