License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2023.24
URN: urn:nbn:de:0030-drops-180762
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18076/
Go to the corresponding LIPIcs Volume Portal


Bilò, Davide ; Choudhary, Keerti ; Cohen, Sarel ; Friedrich, Tobias ; Krogmann, Simon ; Schirneck, Martin

Fault-Tolerant ST-Diameter Oracles

pdf-format:
LIPIcs-ICALP-2023-24.pdf (0.9 MB)


Abstract

We study the problem of estimating the ST-diameter of a graph that is subject to a bounded number of edge failures. An f-edge fault-tolerant ST-diameter oracle (f-FDO-ST) is a data structure that preprocesses a given graph G, two sets of vertices S,T, and positive integer f. When queried with a set F of at most f edges, the oracle returns an estimate D̂ of the ST-diameter diam(G-F,S,T), the maximum distance between vertices in S and T in G-F. The oracle has stretch σ ⩾ 1 if diam(G-F,S,T) ⩽ D̂ ⩽ σ diam(G-F,S,T). If S and T both contain all vertices, the data structure is called an f-edge fault-tolerant diameter oracle (f-FDO). An f-edge fault-tolerant distance sensitivity oracles (f-DSO) estimates the pairwise graph distances under up to f failures.
We design new f-FDOs and f-FDO-STs by reducing their construction to that of all-pairs and single-source f-DSOs. We obtain several new tradeoffs between the size of the data structure, stretch guarantee, query and preprocessing times for diameter oracles by combining our black-box reductions with known results from the literature.
We also provide an information-theoretic lower bound on the space requirement of approximate f-FDOs. We show that there exists a family of graphs for which any f-FDO with sensitivity f ⩾ 2 and stretch less than 5/3 requires Ω(n^{3/2}) bits of space, regardless of the query time.

BibTeX - Entry

@InProceedings{bilo_et_al:LIPIcs.ICALP.2023.24,
  author =	{Bil\`{o}, Davide and Choudhary, Keerti and Cohen, Sarel and Friedrich, Tobias and Krogmann, Simon and Schirneck, Martin},
  title =	{{Fault-Tolerant ST-Diameter Oracles}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{24:1--24:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18076},
  URN =		{urn:nbn:de:0030-drops-180762},
  doi =		{10.4230/LIPIcs.ICALP.2023.24},
  annote =	{Keywords: diameter oracles, distance sensitivity oracles, space lower bounds, fault-tolerant data structures}
}

Keywords: diameter oracles, distance sensitivity oracles, space lower bounds, fault-tolerant data structures
Collection: 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
Issue Date: 2023
Date of publication: 05.07.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI