License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2023.45
URN: urn:nbn:de:0030-drops-180978
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18097/
Go to the corresponding LIPIcs Volume Portal


Compton, Spencer ; Mitrović, Slobodan ; Rubinfeld, Ronitt

New Partitioning Techniques and Faster Algorithms for Approximate Interval Scheduling

pdf-format:
LIPIcs-ICALP-2023-45.pdf (0.6 MB)


Abstract

Interval scheduling is a basic problem in the theory of algorithms and a classical task in combinatorial optimization. We develop a set of techniques for partitioning and grouping jobs based on their starting and ending times, that enable us to view an instance of interval scheduling on many jobs as a union of multiple interval scheduling instances, each containing only a few jobs. Instantiating these techniques in dynamic and local settings of computation leads to several new results.
For (1+ε)-approximation of job scheduling of n jobs on a single machine, we develop a fully dynamic algorithm with O((log n)/ε) update and O(log n) query worst-case time. Further, we design a local computation algorithm that uses only O((log N)/ε) queries when all jobs are length at least 1 and have starting/ending times within [0,N]. Our techniques are also applicable in a setting where jobs have rewards/weights. For this case we design a fully dynamic deterministic algorithm whose worst-case update and query time are poly(log n,1/ε). Equivalently, this is the first algorithm that maintains a (1+ε)-approximation of the maximum independent set of a collection of weighted intervals in poly(log n,1/ε) time updates/queries. This is an exponential improvement in 1/ε over the running time of a randomized algorithm of Henzinger, Neumann, and Wiese [SoCG, 2020], while also removing all dependence on the values of the jobs' starting/ending times and rewards, as well as removing the need for any randomness.
We also extend our approaches for interval scheduling on a single machine to examine the setting with M machines.

BibTeX - Entry

@InProceedings{compton_et_al:LIPIcs.ICALP.2023.45,
  author =	{Compton, Spencer and Mitrovi\'{c}, Slobodan and Rubinfeld, Ronitt},
  title =	{{New Partitioning Techniques and Faster Algorithms for Approximate Interval Scheduling}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{45:1--45:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18097},
  URN =		{urn:nbn:de:0030-drops-180978},
  doi =		{10.4230/LIPIcs.ICALP.2023.45},
  annote =	{Keywords: interval scheduling, dynamic algorithms, local computation algorithms}
}

Keywords: interval scheduling, dynamic algorithms, local computation algorithms
Collection: 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
Issue Date: 2023
Date of publication: 05.07.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI