License: Creative Commons Attribution-NoDerivs 3.0 Unported license (CC BY-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2009.1810
URN: urn:nbn:de:0030-drops-18107
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2009/1810/
Bienvenu, Laurent ;
Downey, Rod
Kolmogorov Complexity and Solovay Functions
Abstract
Solovay (1975) proved that there exists a computable upper bound~$f$ of the prefix-free Kolmogorov complexity function~$K$ such that $f(x)=K(x)$ for infinitely many~$x$. In this paper, we consider the class of computable functions~$f$ such that $K(x) \leq f(x)+O(1)$ for all~$x$ and $f(x) \leq K(x)+O(1)$ for infinitely many~$x$, which we call Solovay functions. We show that Solovay functions present interesting connections with randomness notions such as Martin-L\"of randomness and K-triviality.
BibTeX - Entry
@InProceedings{bienvenu_et_al:LIPIcs:2009:1810,
author = {Laurent Bienvenu and Rod Downey},
title = {{Kolmogorov Complexity and Solovay Functions}},
booktitle = {26th International Symposium on Theoretical Aspects of Computer Science},
pages = {147--158},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-939897-09-5},
ISSN = {1868-8969},
year = {2009},
volume = {3},
editor = {Susanne Albers and Jean-Yves Marion},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2009/1810},
URN = {urn:nbn:de:0030-drops-18107},
doi = {10.4230/LIPIcs.STACS.2009.1810},
annote = {Keywords: Algorithmic randomness, Kolmogorov complexity, K-triviality}
}
Keywords: |
|
Algorithmic randomness, Kolmogorov complexity, K-triviality |
Collection: |
|
26th International Symposium on Theoretical Aspects of Computer Science |
Issue Date: |
|
2009 |
Date of publication: |
|
19.02.2009 |