License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2023.52
URN: urn:nbn:de:0030-drops-181048
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18104/
Go to the corresponding LIPIcs Volume Portal


Eden, Talya ; Liu, Quanquan C. ; Raskhodnikova, Sofya ; Smith, Adam

Triangle Counting with Local Edge Differential Privacy

pdf-format:
LIPIcs-ICALP-2023-52.pdf (1 MB)


Abstract

Many deployments of differential privacy in industry are in the local model, where each party releases its private information via a differentially private randomizer. We study triangle counting in the noninteractive and interactive local model with edge differential privacy (that, intuitively, requires that the outputs of the algorithm on graphs that differ in one edge be indistinguishable). In this model, each party’s local view consists of the adjacency list of one vertex.
In the noninteractive model, we prove that additive Ω(n²) error is necessary, where n is the number of nodes. This lower bound is our main technical contribution. It uses a reconstruction attack with a new class of linear queries and a novel mix-and-match strategy of running the local randomizers with different completions of their adjacency lists. It matches the additive error of the algorithm based on Randomized Response, proposed by Imola, Murakami and Chaudhuri (USENIX2021) and analyzed by Imola, Murakami and Chaudhuri (CCS2022) for constant ε. We use a different postprocessing of Randomized Response and provide tight bounds on the variance of the resulting algorithm.
In the interactive setting, we prove a lower bound of Ω(n^{3/2}) on the additive error. Previously, no hardness results were known for interactive, edge-private algorithms in the local model, except for those that follow trivially from the results for the central model. Our work significantly improves on the state of the art in differentially private graph analysis in the local model.

BibTeX - Entry

@InProceedings{eden_et_al:LIPIcs.ICALP.2023.52,
  author =	{Eden, Talya and Liu, Quanquan C. and Raskhodnikova, Sofya and Smith, Adam},
  title =	{{Triangle Counting with Local Edge Differential Privacy}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{52:1--52:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18104},
  URN =		{urn:nbn:de:0030-drops-181048},
  doi =		{10.4230/LIPIcs.ICALP.2023.52},
  annote =	{Keywords: local differential privacy, reconstruction attacks, lower bounds, triangle counting}
}

Keywords: local differential privacy, reconstruction attacks, lower bounds, triangle counting
Collection: 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
Issue Date: 2023
Date of publication: 05.07.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI