License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2023.75
URN: urn:nbn:de:0030-drops-181271
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18127/
Go to the corresponding LIPIcs Volume Portal


Hliněný, Petr ; Jedelský, Jan

Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar

pdf-format:
LIPIcs-ICALP-2023-75.pdf (0.7 MB)


Abstract

Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices, and it can be seen as widely generalizing several other traditional structural parameters. Having such a sequence at hand allows us to solve many otherwise hard problems efficiently. Graph classes of bounded twin-width, in which appropriate contraction sequences are efficiently constructible, are thus of interest in combinatorics and in computer science. However, we currently do not know in general how to obtain a witnessing contraction sequence of low width efficiently, and published upper bounds on the twin-width in non-trivial cases are often "astronomically large".
We focus on planar graphs, which are known to have bounded twin-width (already since the introduction of twin-width), but the first explicit "non-astronomical" upper bounds on the twin-width of planar graphs appeared just a year ago; namely the bound of at most 183 by Jacob and Pilipczuk [arXiv, January 2022], and 583 by Bonnet, Kwon and Wood [arXiv, February 2022]. Subsequent arXiv manuscripts in 2022 improved the bound down to 37 (Bekos et al.), 11 and 9 (both by Hliněný). We further elaborate on the approach used in the latter manuscripts, proving that the twin-width of every planar graph is at most 8, and construct a witnessing contraction sequence in linear time. Note that the currently best lower-bound planar example is of twin-width 7, by Král' and Lamaison [arXiv, September 2022]. We also prove that the twin-width of every bipartite planar graph is at most 6, and again construct a witnessing contraction sequence in linear time.

BibTeX - Entry

@InProceedings{hlineny_et_al:LIPIcs.ICALP.2023.75,
  author =	{Hlin\v{e}n\'{y}, Petr and Jedelsk\'{y}, Jan},
  title =	{{Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{75:1--75:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18127},
  URN =		{urn:nbn:de:0030-drops-181271},
  doi =		{10.4230/LIPIcs.ICALP.2023.75},
  annote =	{Keywords: twin-width, planar graph}
}

Keywords: twin-width, planar graph
Collection: 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
Issue Date: 2023
Date of publication: 05.07.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI