License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2023.99
URN: urn:nbn:de:0030-drops-181518
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18151/
Go to the corresponding LIPIcs Volume Portal


Resch, Nicolas ; Yuan, Chen ; Zhang, Yihan

Zero-Rate Thresholds and New Capacity Bounds for List-Decoding and List-Recovery

pdf-format:
LIPIcs-ICALP-2023-99.pdf (1 MB)


Abstract

In this work we consider the list-decodability and list-recoverability of arbitrary q-ary codes, for all integer values of q ≥ 2. A code is called (p,L)_q-list-decodable if every radius pn Hamming ball contains less than L codewords; (p,?,L)_q-list-recoverability is a generalization where we place radius pn Hamming balls on every point of a combinatorial rectangle with side length ? and again stipulate that there be less than L codewords.
Our main contribution is to precisely calculate the maximum value of p for which there exist infinite families of positive rate (p,?,L)_q-list-recoverable codes, the quantity we call the zero-rate threshold. Denoting this value by p_*, we in fact show that codes correcting a p_*+ε fraction of errors must have size O_ε(1), i.e., independent of n. Such a result is typically referred to as a "Plotkin bound." To complement this, a standard random code with expurgation construction shows that there exist positive rate codes correcting a p_*-ε fraction of errors. We also follow a classical proof template (typically attributed to Elias and Bassalygo) to derive from the zero-rate threshold other tradeoffs between rate and decoding radius for list-decoding and list-recovery.
Technically, proving the Plotkin bound boils down to demonstrating the Schur convexity of a certain function defined on the q-simplex as well as the convexity of a univariate function derived from it. We remark that an earlier argument claimed similar results for q-ary list-decoding; however, we point out that this earlier proof is flawed.

BibTeX - Entry

@InProceedings{resch_et_al:LIPIcs.ICALP.2023.99,
  author =	{Resch, Nicolas and Yuan, Chen and Zhang, Yihan},
  title =	{{Zero-Rate Thresholds and New Capacity Bounds for List-Decoding and List-Recovery}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{99:1--99:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18151},
  URN =		{urn:nbn:de:0030-drops-181518},
  doi =		{10.4230/LIPIcs.ICALP.2023.99},
  annote =	{Keywords: Coding theory, List-decoding, List-recovery, Zero-rate thresholds}
}

Keywords: Coding theory, List-decoding, List-recovery, Zero-rate thresholds
Collection: 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
Issue Date: 2023
Date of publication: 05.07.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI