License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2023.131
URN: urn:nbn:de:0030-drops-181834
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18183/
Go to the corresponding LIPIcs Volume Portal


Künnemann, Marvin ; Mazowiecki, Filip ; Schütze, Lia ; Sinclair-Banks, Henry ; Węgrzycki, Karol

Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain Conditional Optimality

pdf-format:
LIPIcs-ICALP-2023-131.pdf (1 MB)


Abstract

Seminal results establish that the coverability problem for Vector Addition Systems with States (VASS) is in EXPSPACE (Rackoff, '78) and is EXPSPACE-hard already under unary encodings (Lipton, '76). More precisely, Rosier and Yen later utilise Rackoff’s bounding technique to show that if coverability holds then there is a run of length at most n^{2^?(d log d)}, where d is the dimension and n is the size of the given unary VASS. Earlier, Lipton showed that there exist instances of coverability in d-dimensional unary VASS that are only witnessed by runs of length at least n^{2^Ω(d)}. Our first result closes this gap. We improve the upper bound by removing the twice-exponentiated log(d) factor, thus matching Lipton’s lower bound. This closes the corresponding gap for the exact space required to decide coverability. This also yields a deterministic n^{2^?(d)}-time algorithm for coverability. Our second result is a matching lower bound, that there does not exist a deterministic n^{2^o(d)}-time algorithm, conditioned upon the Exponential Time Hypothesis.
When analysing coverability, a standard proof technique is to consider VASS with bounded counters. Bounded VASS make for an interesting and popular model due to strong connections with timed automata. Withal, we study a natural setting where the counter bound is linear in the size of the VASS. Here the trivial exhaustive search algorithm runs in ?(n^{d+1})-time. We give evidence to this being near-optimal. We prove that in dimension one this trivial algorithm is conditionally optimal, by showing that n^{2-o(1)}-time is required under the k-cycle hypothesis. In general fixed dimension d, we show that n^{d-2-o(1)}-time is required under the 3-uniform hyperclique hypothesis.

BibTeX - Entry

@InProceedings{kunnemann_et_al:LIPIcs.ICALP.2023.131,
  author =	{K\"{u}nnemann, Marvin and Mazowiecki, Filip and Sch\"{u}tze, Lia and Sinclair-Banks, Henry and W\k{e}grzycki, Karol},
  title =	{{Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain Conditional Optimality}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{131:1--131:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18183},
  URN =		{urn:nbn:de:0030-drops-181834},
  doi =		{10.4230/LIPIcs.ICALP.2023.131},
  annote =	{Keywords: Vector Addition System, Coverability, Reachability, Fine-Grained Complexity, Exponential Time Hypothesis, k-Cycle Hypothesis, Hyperclique Hypothesis}
}

Keywords: Vector Addition System, Coverability, Reachability, Fine-Grained Complexity, Exponential Time Hypothesis, k-Cycle Hypothesis, Hyperclique Hypothesis
Collection: 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
Issue Date: 2023
Date of publication: 05.07.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI