License: Creative Commons Attribution-NoDerivs 3.0 Unported license (CC BY-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2009.1822
URN: urn:nbn:de:0030-drops-18222
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2009/1822/
Bassino, Frederique ;
David, Julien ;
Nicaud, Cyril
On the Average Complexity of Moore's State Minimization Algorithm
Abstract
We prove that, for any arbitrary finite alphabet and for the uniform distribution over deterministic and accessible automata with $n$ states, the average complexity of Moore's state minimization algorithm is in $\mathcal{O}(n \log n)$. Moreover this bound is tight in the case of unary automata.
BibTeX - Entry
@InProceedings{bassino_et_al:LIPIcs:2009:1822,
author = {Frederique Bassino and Julien David and Cyril Nicaud},
title = {{On the Average Complexity of Moore's State Minimization Algorithm}},
booktitle = {26th International Symposium on Theoretical Aspects of Computer Science},
pages = {123--134},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-939897-09-5},
ISSN = {1868-8969},
year = {2009},
volume = {3},
editor = {Susanne Albers and Jean-Yves Marion},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2009/1822},
URN = {urn:nbn:de:0030-drops-18222},
doi = {10.4230/LIPIcs.STACS.2009.1822},
annote = {Keywords: Finite automata, State minimization, Moore’s algorithm, Average complexity}
}
Keywords: |
|
Finite automata, State minimization, Moore’s algorithm, Average complexity |
Collection: |
|
26th International Symposium on Theoretical Aspects of Computer Science |
Issue Date: |
|
2009 |
Date of publication: |
|
19.02.2009 |