License: Creative Commons Attribution-NoDerivs 3.0 Unported license (CC BY-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2009.1826
URN: urn:nbn:de:0030-drops-18263
Go to the corresponding LIPIcs Volume Portal

Englert, Matthias ; Röglin, Heiko ; Spönemann, Jacob ; Vöcking, Berthold

Economical Caching

09001.EnglertMatthias.1826.pdf (0.2 MB)


We study the management of buffers and storages in environments with unpredictably varying prices in a competitive analysis. In the economical caching problem, there is a storage with a certain capacity. For each time step, an online algorithm is given a price from the interval $[1,\alpha]$, a consumption, and possibly a buying limit. The online algorithm has to decide the amount to purchase from some commodity, knowing the parameter $\alpha$ but without knowing how the price evolves in the future. The algorithm can purchase at most the buying limit. If it purchases more than the current consumption, then the excess is stored in the storage; otherwise, the gap between consumption and purchase must be taken from the storage. The goal is to minimize the total cost. Interesting applications are, for example, stream caching on mobile devices with different classes of service, battery management in micro hybrid cars, and the efficient purchase of resources.

First we consider the simple but natural class of algorithms that can informally be described as memoryless. We show that these algorithms cannot achieve a competitive ratio below $\sqrt{\alpha}$. Then we present a more sophisticated deterministic algorithm achieving a competitive ratio of
\frac{1}{W\left(\frac{1-\alpha}{e\alpha}\right)+1} \in
\right] \enspace, \]
where $W$ denotes the Lambert~W function. We prove that this algorithm is optimal and that not even randomized online algorithms can achieve a better competitive ratio. On the other hand, we show how to achieve a constant competitive ratio if the storage capacity of the online algorithm exceeds the storage capacity of an optimal offline algorithm by a factor of $\log \alpha$.

BibTeX - Entry

  author =	{Matthias Englert and Heiko R{\"o}glin and Jacob Sp{\"o}nemann and Berthold V{\"o}cking},
  title =	{{Economical Caching}},
  booktitle =	{26th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{385--396},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-09-5},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{3},
  editor =	{Susanne Albers and Jean-Yves Marion},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-18263},
  doi =		{10.4230/LIPIcs.STACS.2009.1826},
  annote =	{Keywords: Online algorithms, Competitive analysis, Storage management}

Keywords: Online algorithms, Competitive analysis, Storage management
Collection: 26th International Symposium on Theoretical Aspects of Computer Science
Issue Date: 2009
Date of publication: 19.02.2009

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI