License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2023.31
URN: urn:nbn:de:0030-drops-183011
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18301/
Go to the corresponding LIPIcs Volume Portal


Austrin, Per ; Risse, Kilian

Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

pdf-format:
LIPIcs-CCC-2023-31.pdf (1.0 MB)


Abstract

We prove lower bounds for the Minimum Circuit Size Problem (MCSP) in the Sum-of-Squares (SoS) proof system. Our main result is that for every Boolean function f: {0,1}ⁿ → {0,1}, SoS requires degree Ω(s^{1-ε}) to prove that f does not have circuits of size s (for any s > poly(n)). As a corollary we obtain that there are no low degree SoS proofs of the statement NP ⊈ P/poly.
We also show that for any 0 < α < 1 there are Boolean functions with circuit complexity larger than 2^{n^α} but SoS requires size 2^{2^Ω(n^α)} to prove this. In addition we prove analogous results on the minimum monotone circuit size for monotone Boolean slice functions.
Our approach is quite general. Namely, we show that if a proof system Q has strong enough constraint satisfaction problem lower bounds that only depend on good expansion of the constraint-variable incidence graph and, furthermore, Q is expressive enough that variables can be substituted by local Boolean functions, then the MCSP problem is hard for Q.

BibTeX - Entry

@InProceedings{austrin_et_al:LIPIcs.CCC.2023.31,
  author =	{Austrin, Per and Risse, Kilian},
  title =	{{Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{31:1--31:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18301},
  URN =		{urn:nbn:de:0030-drops-183011},
  doi =		{10.4230/LIPIcs.CCC.2023.31},
  annote =	{Keywords: Proof Complexity, Sum of Squares, Minimum Circuit Size Problem}
}

Keywords: Proof Complexity, Sum of Squares, Minimum Circuit Size Problem
Collection: 38th Computational Complexity Conference (CCC 2023)
Issue Date: 2023
Date of publication: 10.07.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI