License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.TQC.2023.3
URN: urn:nbn:de:0030-drops-183139
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18313/
Go to the corresponding LIPIcs Volume Portal


Arunachalam, Srinivasan ; Bravyi, Sergey ; Dutt, Arkopal ; Yoder, Theodore J.

Optimal Algorithms for Learning Quantum Phase States

pdf-format:
LIPIcs-TQC-2023-3.pdf (0.9 MB)


Abstract

We analyze the complexity of learning n-qubit quantum phase states. A degree-d phase state is defined as a superposition of all 2ⁿ basis vectors x with amplitudes proportional to (-1)^{f(x)}, where f is a degree-d Boolean polynomial over n variables. We show that the sample complexity of learning an unknown degree-d phase state is Θ(n^d) if we allow separable measurements and Θ(n^{d-1}) if we allow entangled measurements. Our learning algorithm based on separable measurements has runtime poly(n) (for constant d) and is well-suited for near-term demonstrations as it requires only single-qubit measurements in the Pauli X and Z bases. We show similar bounds on the sample complexity for learning generalized phase states with complex-valued amplitudes. We further consider learning phase states when f has sparsity-s, degree-d in its ?₂ representation (with sample complexity O(2^d sn)), f has Fourier-degree-t (with sample complexity O(2^{2t})), and learning quadratic phase states with ε-global depolarizing noise (with sample complexity O(n^{1+ε})). These learning algorithms give us a procedure to learn the diagonal unitaries of the Clifford hierarchy and IQP circuits.

BibTeX - Entry

@InProceedings{arunachalam_et_al:LIPIcs.TQC.2023.3,
  author =	{Arunachalam, Srinivasan and Bravyi, Sergey and Dutt, Arkopal and Yoder, Theodore J.},
  title =	{{Optimal Algorithms for Learning Quantum Phase States}},
  booktitle =	{18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)},
  pages =	{3:1--3:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-283-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{266},
  editor =	{Fawzi, Omar and Walter, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18313},
  URN =		{urn:nbn:de:0030-drops-183139},
  doi =		{10.4230/LIPIcs.TQC.2023.3},
  annote =	{Keywords: Tomography, binary phase states, generalized phase states, IQP circuits}
}

Keywords: Tomography, binary phase states, generalized phase states, IQP circuits
Collection: 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)
Issue Date: 2023
Date of publication: 18.07.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI