License: 
 Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SEA.2023.15
URN: urn:nbn:de:0030-drops-183657
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18365/
 
Eyubov, Kamal ; 
Fonseca Faraj, Marcelo ; 
Schulz, Christian 
FREIGHT: Fast Streaming Hypergraph Partitioning
Abstract
Partitioning the vertices of a (hyper)graph into k roughly balanced blocks such that few (hyper)edges run between blocks is a key problem for large-scale distributed processing. A current trend for partitioning huge (hyper)graphs using low computational resources are streaming algorithms. In this work, we propose FREIGHT: a Fast stREamInG Hypergraph parTitioning algorithm which is an adaptation of the widely-known graph-based algorithm Fennel. By using an efficient data structure, we make the overall running of FREIGHT linearly dependent on the pin-count of the hypergraph and the memory consumption linearly dependent on the numbers of nets and blocks. The results of our extensive experimentation showcase the promising performance of FREIGHT as a highly efficient and effective solution for streaming hypergraph partitioning. Our algorithm demonstrates competitive running time with the Hashing algorithm, with a difference of a maximum factor of four observed on three fourths of the instances. Significantly, our findings highlight the superiority of FREIGHT over all existing (buffered) streaming algorithms and even the in-memory algorithm HYPE, with respect to both cut-net and connectivity measures. This indicates that our proposed algorithm is a promising hypergraph partitioning tool to tackle the challenge posed by large-scale and dynamic data processing.
BibTeX - Entry
@InProceedings{eyubov_et_al:LIPIcs.SEA.2023.15,
  author =	{Eyubov, Kamal and Fonseca Faraj, Marcelo and Schulz, Christian},
  title =	{{FREIGHT: Fast Streaming Hypergraph Partitioning}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{15:1--15:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18365},
  URN =		{urn:nbn:de:0030-drops-183657},
  doi =		{10.4230/LIPIcs.SEA.2023.15},
  annote =	{Keywords: Hypergraph partitioning, graph partitioning, edge partitioning, streaming}
}
 
| 
Keywords: |  
 | 
Hypergraph partitioning, graph partitioning, edge partitioning, streaming  | 
 
 
| 
Collection: |  
 | 
21st International Symposium on Experimental Algorithms (SEA 2023) | 
 
 
| 
Issue Date: |  
 | 
2023  | 
 
 
| 
Date of publication: |  
 | 
19.07.2023  |