License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SEA.2023.15
URN: urn:nbn:de:0030-drops-183657
Go to the corresponding LIPIcs Volume Portal

Eyubov, Kamal ; Fonseca Faraj, Marcelo ; Schulz, Christian

FREIGHT: Fast Streaming Hypergraph Partitioning

LIPIcs-SEA-2023-15.pdf (1 MB)


Partitioning the vertices of a (hyper)graph into k roughly balanced blocks such that few (hyper)edges run between blocks is a key problem for large-scale distributed processing. A current trend for partitioning huge (hyper)graphs using low computational resources are streaming algorithms. In this work, we propose FREIGHT: a Fast stREamInG Hypergraph parTitioning algorithm which is an adaptation of the widely-known graph-based algorithm Fennel. By using an efficient data structure, we make the overall running of FREIGHT linearly dependent on the pin-count of the hypergraph and the memory consumption linearly dependent on the numbers of nets and blocks. The results of our extensive experimentation showcase the promising performance of FREIGHT as a highly efficient and effective solution for streaming hypergraph partitioning. Our algorithm demonstrates competitive running time with the Hashing algorithm, with a difference of a maximum factor of four observed on three fourths of the instances. Significantly, our findings highlight the superiority of FREIGHT over all existing (buffered) streaming algorithms and even the in-memory algorithm HYPE, with respect to both cut-net and connectivity measures. This indicates that our proposed algorithm is a promising hypergraph partitioning tool to tackle the challenge posed by large-scale and dynamic data processing.

BibTeX - Entry

  author =	{Eyubov, Kamal and Fonseca Faraj, Marcelo and Schulz, Christian},
  title =	{{FREIGHT: Fast Streaming Hypergraph Partitioning}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{15:1--15:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-183657},
  doi =		{10.4230/LIPIcs.SEA.2023.15},
  annote =	{Keywords: Hypergraph partitioning, graph partitioning, edge partitioning, streaming}

Keywords: Hypergraph partitioning, graph partitioning, edge partitioning, streaming
Collection: 21st International Symposium on Experimental Algorithms (SEA 2023)
Issue Date: 2023
Date of publication: 19.07.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI