License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SEA.2023.17
URN: urn:nbn:de:0030-drops-183674
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18367/
Go to the corresponding LIPIcs Volume Portal


Wahl, Noah ; Gottesb├╝ren, Lars

Greedy Heuristics for Judicious Hypergraph Partitioning

pdf-format:
LIPIcs-SEA-2023-17.pdf (2 MB)


Abstract

We investigate the efficacy of greedy heuristics for the judicious hypergraph partitioning problem. In contrast to balanced partitioning problems, the goal of judicious hypergraph partitioning is to minimize the maximum load over all blocks of the partition. We devise strategies for initial partitioning and FM-style post-processing. In combination with a multilevel scheme, they beat the previous state-of-the-art solver - based on greedy set covers - in both running time (two to four orders of magnitude) and solution quality (18% to 45%). A major challenge that makes local greedy approaches difficult to use for this problem is the high frequency of zero-gain moves, for which we present and evaluate counteracting mechanisms.

BibTeX - Entry

@InProceedings{wahl_et_al:LIPIcs.SEA.2023.17,
  author =	{Wahl, Noah and Gottesb\"{u}ren, Lars},
  title =	{{Greedy Heuristics for Judicious Hypergraph Partitioning}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{17:1--17:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18367},
  URN =		{urn:nbn:de:0030-drops-183674},
  doi =		{10.4230/LIPIcs.SEA.2023.17},
  annote =	{Keywords: hypergraph partitioning, local search algorithms, load balancing, local search}
}

Keywords: hypergraph partitioning, local search algorithms, load balancing, local search
Collection: 21st International Symposium on Experimental Algorithms (SEA 2023)
Issue Date: 2023
Date of publication: 19.07.2023
Supplementary Material: Software (Source Code): https://github.com/kahypar/mt-kahypar/tree/judicious_refinement
Other (Experimental Results and Phylo Instances): https://github.com/noahares/PhyloBenchmarkSet


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI