License: Creative Commons Attribution-NoDerivs 3.0 Unported license (CC BY-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2009.1843
URN: urn:nbn:de:0030-drops-18437
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2009/1843/
Go to the corresponding LIPIcs Volume Portal


Fernau, Henning ; Fomin, Fedor V. ; Lokshtanov, Daniel ; Raible, Daniel ; Saurabh, Saket ; Villanger, Yngve

Kernel(s) for Problems with No Kernel: On Out-Trees with Many Leaves

pdf-format:
09001.FernauHenning.1843.pdf (0.2 MB)


Abstract

The {\sc $k$-Leaf Out-Branching} problem is to find an out-branching, that is a rooted oriented spanning tree, with at least $k$ leaves in a given digraph. The problem has recently received much attention from the viewpoint of parameterized algorithms. Here, we take a kernelization based approach to the {\sc $k$-Leaf-Out-Branching} problem. We give the first polynomial kernel for {\sc Rooted $k$-Leaf-Out-Branching}, a variant of {\sc $k$-Leaf-Out-Branching} where the root of the tree searched for is also a part of the input. Our kernel has cubic size and is obtained using extremal combinatorics.

For the {\sc $k$-Leaf-Out-Branching} problem, we show that no polynomial kernel is possible unless the polynomial hierarchy collapses to third level by applying a recent breakthrough result by Bodlaender et al. (ICALP 2008) in a non-trivial fashion. However, our positive results for {\sc Rooted $k$-Leaf-Out-Branching} immediately imply that the seemingly intractable {\sc $k$-Leaf-Out-Branching} problem admits a data reduction to $n$ independent $O(k^3)$ kernels. These two results, tractability and intractability side by side, are the first ones separating {\it many-to-one kernelization} from {\it Turing kernelization}. This answers affirmatively an open problem regarding ``cheat kernelization'' raised by Mike Fellows and Jiong Guo independently.

BibTeX - Entry

@InProceedings{fernau_et_al:LIPIcs:2009:1843,
  author =	{Henning Fernau and Fedor V. Fomin and Daniel Lokshtanov and Daniel Raible and Saket Saurabh and Yngve Villanger},
  title =	{{Kernel(s) for Problems with No Kernel: On Out-Trees with Many Leaves}},
  booktitle =	{26th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{421--432},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-09-5},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{3},
  editor =	{Susanne Albers and Jean-Yves Marion},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2009/1843},
  URN =		{urn:nbn:de:0030-drops-18437},
  doi =		{10.4230/LIPIcs.STACS.2009.1843},
  annote =	{Keywords: Parameterized algorithms, Kernelization, Out-branching, Max-leaf, Lower bounds}
}

Keywords: Parameterized algorithms, Kernelization, Out-branching, Max-leaf, Lower bounds
Collection: 26th International Symposium on Theoretical Aspects of Computer Science
Issue Date: 2009
Date of publication: 19.02.2009


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI