License: Creative Commons Attribution-NoDerivs 3.0 Unported license (CC BY-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2009.1845
URN: urn:nbn:de:0030-drops-18452
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2009/1845/
Franceschini, Gianni ;
Grossi, Roberto ;
Muthukrishnan, S.
Optimal Cache-Aware Suffix Selection
Abstract
Given string $S[1..N]$ and integer $k$, the {\em suffix selection} problem is to determine the $k$th lexicographically smallest amongst the suffixes $S[i\ldots N]$, $1 \leq i \leq N$. We study the suffix selection problem in the cache-aware model that captures two-level memory inherent in computing systems, for a \emph{cache} of limited size $M$ and block size $B$. The complexity of interest is the number of block transfers. We present an optimal suffix selection algorithm in the cache-aware model, requiring $\Theta\left(N/B\right)$ block transfers, for any string $S$ over an unbounded alphabet (where characters can only be compared), under the common tall-cache assumption (i.e. $M=\Omega\left(B^{1+\epsilon}\right)$, where $\epsilon<1$). Our algorithm beats the bottleneck bound for permuting an input array to the desired output array, which holds for nearly any nontrivial problem in hierarchical memory models.
BibTeX - Entry
@InProceedings{franceschini_et_al:LIPIcs:2009:1845,
author = {Gianni Franceschini and Roberto Grossi and S. Muthukrishnan},
title = {{Optimal Cache-Aware Suffix Selection}},
booktitle = {26th International Symposium on Theoretical Aspects of Computer Science},
pages = {457--468},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-939897-09-5},
ISSN = {1868-8969},
year = {2009},
volume = {3},
editor = {Susanne Albers and Jean-Yves Marion},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2009/1845},
URN = {urn:nbn:de:0030-drops-18452},
doi = {10.4230/LIPIcs.STACS.2009.1845},
annote = {Keywords: }
}
Collection: |
|
26th International Symposium on Theoretical Aspects of Computer Science |
Issue Date: |
|
2009 |
Date of publication: |
|
19.02.2009 |