License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.TYPES.2022.10
URN: urn:nbn:de:0030-drops-184534
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18453/
Go to the corresponding LIPIcs Volume Portal


Altenkirch, Thorsten ; Kaposi, Ambrus ; Šinkarovs, Artjoms ; Végh, Tamás

The Münchhausen Method in Type Theory

pdf-format:
LIPIcs-TYPES-2022-10.pdf (0.7 MB)


Abstract

In one of his long tales, after falling into a swamp, Baron Münchhausen salvaged himself and the horse by lifting them both up by his hair. Inspired by this, the paper presents a technique to justify very dependent types. Such types reference the term that they classify, e.g. x : F x. While in most type theories this is not allowed, we propose a technique on salvaging the meaning of both the term and the type. The proposed technique does not refer to preterms or typing relations and works in a completely algebraic setting, e.g categories with families. With a series of examples we demonstrate our technique. We use Agda to demonstrate that our examples are implementable within a proof assistant.

BibTeX - Entry

@InProceedings{altenkirch_et_al:LIPIcs.TYPES.2022.10,
  author =	{Altenkirch, Thorsten and Kaposi, Ambrus and \v{S}inkarovs, Artjoms and V\'{e}gh, Tam\'{a}s},
  title =	{{The M\"{u}nchhausen Method in Type Theory}},
  booktitle =	{28th International Conference on Types for Proofs and Programs (TYPES 2022)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-285-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{269},
  editor =	{Kesner, Delia and P\'{e}drot, Pierre-Marie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18453},
  URN =		{urn:nbn:de:0030-drops-184534},
  doi =		{10.4230/LIPIcs.TYPES.2022.10},
  annote =	{Keywords: type theory, proof assistants, very dependent types}
}

Keywords: type theory, proof assistants, very dependent types
Collection: 28th International Conference on Types for Proofs and Programs (TYPES 2022)
Issue Date: 2023
Date of publication: 28.07.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI