License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SAT.2023.9
URN: urn:nbn:de:0030-drops-184717
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18471/
Go to the corresponding LIPIcs Volume Portal


Fried, Dror ; Nadel, Alexander ; Shalmon, Yogev

AllSAT for Combinational Circuits

pdf-format:
LIPIcs-SAT-2023-9.pdf (0.8 MB)


Abstract

Motivated by the need to improve the scalability of Intel’s in-house Static Timing Analysis (STA) tool, we consider the problem of enumerating all the solutions of a single-output combinational Boolean circuit, called AllSAT-CT. While AllSAT-CT is immediately reducible to enumerating the solutions of a Boolean formula in Conjunctive Normal Form (AllSAT-CNF), our experiments had shown that such a reduction, followed by applying state-of-the-art AllSAT-CNF tools, does not scale well on neither our industrial AllSAT-CT instances nor generic circuits, both when the user requires the solutions to be disjoint or when they can be non-disjoint. We focused on understanding the reasons for this phenomenon for the well-known iterative blocking family of AllSAT-CNF algorithms. We realized that existing blocking AllSAT-CNF algorithms fail to generalize efficiently for AllSAT-CT, since they are restricted to Boolean logic. Consequently, we introduce three dedicated AllSAT-CT algorithms that are ternary-logic-aware: a ternary simulation-based algorithm TALE, a dual-rail&MaxSAT-based algorithm MARS, and their combination. Specifically, we introduce in MARS two novel blocking clause generation approaches for the disjoint and non-disjoint cases. We implemented our algorithms in our new tool HALL. We show that HALL scales substantially better than any reduction to existing AllSAT-CNF tools on our industrial STA instances as well as on publicly available families of combinational circuits for both the disjoint and the non-disjoint cases.

BibTeX - Entry

@InProceedings{fried_et_al:LIPIcs.SAT.2023.9,
  author =	{Fried, Dror and Nadel, Alexander and Shalmon, Yogev},
  title =	{{AllSAT for Combinational Circuits}},
  booktitle =	{26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-286-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{271},
  editor =	{Mahajan, Meena and Slivovsky, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18471},
  URN =		{urn:nbn:de:0030-drops-184717},
  doi =		{10.4230/LIPIcs.SAT.2023.9},
  annote =	{Keywords: AllSAT, SAT, Circuits}
}

Keywords: AllSAT, SAT, Circuits
Collection: 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)
Issue Date: 2023
Date of publication: 09.08.2023
Supplementary Material: Software: https://github.com/yogevshalmon/allsat-circuits archived at: https://archive.softwareheritage.org/swh:1:dir:38b9a6b1c31218fe227ef1848a74ea0a7f37d86e


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI