License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2023.20
URN: urn:nbn:de:0030-drops-185546
Go to the corresponding LIPIcs Volume Portal

Bizière, Clotilde ; Grädel, Erich ; Naaf, Matthias

Locality Theorems in Semiring Semantics

LIPIcs-MFCS-2023-20.pdf (0.7 MB)


Semiring semantics of first-order logic generalises classical Boolean semantics by permitting truth values from a commutative semiring, which can model information such as costs or access restrictions. This raises the question to what extent classical model-theoretic properties still apply, and how this depends on the algebraic properties of the semiring.
In this paper, we study this question for the classical locality theorems due to Hanf and Gaifman. We prove that Hanf’s locality theorem generalises to all semirings with idempotent operations, but fails for many non-idempotent semirings. We then consider Gaifman normal forms and show that for formulae with free variables, Gaifman’s theorem does not generalise beyond the Boolean semiring. Also for sentences, it fails in the natural semiring and the tropical semiring. Our main result, however, is a constructive proof of the existence of Gaifman normal forms for min-max and lattice semirings. The proof implies a stronger version of Gaifman’s classical theorem in Boolean semantics: every sentence has a Gaifman normal form which does not add negations.

BibTeX - Entry

  author =	{Bizi\`{e}re, Clotilde and Gr\"{a}del, Erich and Naaf, Matthias},
  title =	{{Locality Theorems in Semiring Semantics}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{20:1--20:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-185546},
  doi =		{10.4230/LIPIcs.MFCS.2023.20},
  annote =	{Keywords: Semiring semantics, Locality, First-order logic}

Keywords: Semiring semantics, Locality, First-order logic
Collection: 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)
Issue Date: 2023
Date of publication: 21.08.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI