License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2023.54
URN: urn:nbn:de:0030-drops-185889
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18588/
Go to the corresponding LIPIcs Volume Portal


Holznigenkemper, Jana ; Komusiewicz, Christian ; Morawietz, Nils ; Seeger, Bernhard

On the Complexity of Computing Time Series Medians Under the Move-Split-Merge Metric

pdf-format:
LIPIcs-MFCS-2023-54.pdf (0.9 MB)


Abstract

We initiate a study of the complexity of MSM-Median, the problem of computing a median of a set of k real-valued time series under the move-split-merge distance. This distance measure is based on three operations: moves, which may shift a data point in a time series; splits, which replace one data point in a time series by two consecutive data points of the same value; and merges, which replace two consecutive data points of equal value by a single data point of the same value. The cost of a move operation is the difference of the data point value before and after the operation, the cost of split and merge operations is defined via a given constant c.
Our main results are as follows. First, we show that MSM-Median is NP-hard and W[1]-hard with respect to k for time series with at most three distinct values. Under the Exponential Time Hypothesis (ETH) our reduction implies that a previous dynamic programming algorithm with running time |I|^?(k) [Holznigenkemper et al., Data Min. Knowl. Discov. '23] is essentially optimal. Here, |I| denotes the total input size. Second, we show that MSM-Median can be solved in 2^?(d/c)⋅|I|^?(1) time where d is the total distance of the median to the input time series.

BibTeX - Entry

@InProceedings{holznigenkemper_et_al:LIPIcs.MFCS.2023.54,
  author =	{Holznigenkemper, Jana and Komusiewicz, Christian and Morawietz, Nils and Seeger, Bernhard},
  title =	{{On the Complexity of Computing Time Series Medians Under the Move-Split-Merge Metric}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{54:1--54:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18588},
  URN =		{urn:nbn:de:0030-drops-185889},
  doi =		{10.4230/LIPIcs.MFCS.2023.54},
  annote =	{Keywords: Parameterized Complexity, Median String, Time Series, ETH}
}

Keywords: Parameterized Complexity, Median String, Time Series, ETH
Collection: 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)
Issue Date: 2023
Date of publication: 21.08.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI