License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2023.64
URN: urn:nbn:de:0030-drops-185981
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18598/
Go to the corresponding LIPIcs Volume Portal


Lucke, Felicia ; Paulusma, Daniël ; Ries, Bernard

Dichotomies for Maximum Matching Cut: H-Freeness, Bounded Diameter, Bounded Radius

pdf-format:
LIPIcs-MFCS-2023-64.pdf (0.7 MB)


Abstract

The (Perfect) Matching Cut problem is to decide if a graph G has a (perfect) matching cut, i.e., a (perfect) matching that is also an edge cut of G. Both Matching Cut and Perfect Matching Cut are known to be NP-complete, leading to many complexity results for both problems on special graph classes. A perfect matching cut is also a matching cut with maximum number of edges. To increase our understanding of the relationship between the two problems, we introduce the Maximum Matching Cut problem. This problem is to determine a largest matching cut in a graph. We generalize and unify known polynomial-time algorithms for Matching Cut and Perfect Matching Cut restricted to graphs of diameter at most 2 and to (P₆+sP₂)-free graphs. We also show that the complexity of Maximum Matching Cut differs from the complexities of Matching Cut and Perfect Matching Cut by proving NP-hardness of Maximum Matching Cut for 2P₃-free quadrangulated graphs of diameter 3 and radius 2 and for subcubic line graphs of triangle-free graphs. In this way, we obtain full dichotomies of Maximum Matching Cut for graphs of bounded diameter, bounded radius and H-free graphs.

BibTeX - Entry

@InProceedings{lucke_et_al:LIPIcs.MFCS.2023.64,
  author =	{Lucke, Felicia and Paulusma, Dani\"{e}l and Ries, Bernard},
  title =	{{Dichotomies for Maximum Matching Cut: H-Freeness, Bounded Diameter, Bounded Radius}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{64:1--64:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18598},
  URN =		{urn:nbn:de:0030-drops-185981},
  doi =		{10.4230/LIPIcs.MFCS.2023.64},
  annote =	{Keywords: matching cut, perfect matching, H-free graph, diameter, radius, dichotomy}
}

Keywords: matching cut, perfect matching, H-free graph, diameter, radius, dichotomy
Collection: 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)
Issue Date: 2023
Date of publication: 21.08.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI