License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2023.85
URN: urn:nbn:de:0030-drops-186192
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18619/
Go to the corresponding LIPIcs Volume Portal


Uchizawa, Kei ; Abe, Haruki

Exponential Lower Bounds for Threshold Circuits of Sub-Linear Depth and Energy

pdf-format:
LIPIcs-MFCS-2023-85.pdf (0.7 MB)


Abstract

In this paper, we investigate computational power of threshold circuits and other theoretical models of neural networks in terms of the following four complexity measures: size (the number of gates), depth, weight and energy. Here, the energy of a circuit measures sparsity of their computation, and is defined as the maximum number of gates outputting non-zero values taken over all the input assignments.
As our main result, we prove that any threshold circuit C of size s, depth d, energy e and weight w satisfies log(rk(M_C)) ≤ ed (log s + log w + log n), where rk(M_C) is the rank of the communication matrix M_C of a 2n-variable Boolean function that C computes. Thus, such a threshold circuit C is able to compute only a Boolean function of which communication matrix has rank bounded by a product of logarithmic factors of s, w and linear factors of d, e. This implies an exponential lower bound on the size of even sublinear-depth and sublinear-energy threshold circuit. For example, we can obtain an exponential lower bound s = 2^Ω(n^{1/3}) for threshold circuits of depth n^{1/3}, energy n^{1/3} and weight 2^o(n^{1/3}). We also show that the inequality is tight up to a constant factor when the depth d and energy e satisfies ed = o(n/log n).
For other models of neural networks such as a discretized ReLU circuits and descretized sigmoid circuits, we define energy as the maximum number of gates outputting non-zero values. We then prove that a similar inequality also holds for a discretized circuit C: rk(M_C) = O(ed(log s + log w + log n)³). Thus, if we consider the number gates outputting non-zero values as a measure for sparse activity of a neural network, our results suggest that larger depth linearly helps neural networks to acquire sparse activity.

BibTeX - Entry

@InProceedings{uchizawa_et_al:LIPIcs.MFCS.2023.85,
  author =	{Uchizawa, Kei and Abe, Haruki},
  title =	{{Exponential Lower Bounds for Threshold Circuits of Sub-Linear Depth and Energy}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{85:1--85:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18619},
  URN =		{urn:nbn:de:0030-drops-186192},
  doi =		{10.4230/LIPIcs.MFCS.2023.85},
  annote =	{Keywords: Circuit complexity, disjointness function, equality function, neural networks, threshold circuits, ReLU cicuits, sigmoid circuits, sparse activity}
}

Keywords: Circuit complexity, disjointness function, equality function, neural networks, threshold circuits, ReLU cicuits, sigmoid circuits, sparse activity
Collection: 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)
Issue Date: 2023
Date of publication: 21.08.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI