License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2023.12
URN: urn:nbn:de:0030-drops-186659
Go to the corresponding LIPIcs Volume Portal

Bampis, Evripidis ; Escoffier, Bruno ; Gouleakis, Themis ; Hahn, Niklas ; Lakis, Kostas ; Shahkarami, Golnoosh ; Xefteris, Michalis

Learning-Augmented Online TSP on Rings, Trees, Flowers and (Almost) Everywhere Else

LIPIcs-ESA-2023-12.pdf (0.8 MB)


We study the Online Traveling Salesperson Problem (OLTSP) with predictions. In OLTSP, a sequence of initially unknown requests arrive over time at points (locations) of a metric space. The goal is, starting from a particular point of the metric space (the origin), to serve all these requests while minimizing the total time spent. The server moves with unit speed or is "waiting" (zero speed) at some location. We consider two variants: in the open variant, the goal is achieved when the last request is served. In the closed one, the server additionally has to return to the origin. We adopt a prediction model, introduced for OLTSP on the line [Gouleakis et al., 2023], in which the predictions correspond to the locations of the requests and extend it to more general metric spaces.
We first propose an oracle-based algorithmic framework, inspired by previous work [Bampis et al., 2023]. This framework allows us to design online algorithms for general metric spaces that provide competitive ratio guarantees which, given perfect predictions, beat the best possible classical guarantee (consistency). Moreover, they degrade gracefully along with the increase in error (smoothness), but always within a constant factor of the best known competitive ratio in the classical case (robustness).
Having reduced the problem to designing suitable efficient oracles, we describe how to achieve this for general metric spaces as well as specific metric spaces (rings, trees and flowers), the resulting algorithms being tractable in the latter case. The consistency guarantees of our algorithms are tight in almost all cases, and their smoothness guarantees only suffer a linear dependency on the error, which we show is necessary. Finally, we provide robustness guarantees improving previous results.

BibTeX - Entry

  author =	{Bampis, Evripidis and Escoffier, Bruno and Gouleakis, Themis and Hahn, Niklas and Lakis, Kostas and Shahkarami, Golnoosh and Xefteris, Michalis},
  title =	{{Learning-Augmented Online TSP on Rings, Trees, Flowers and (Almost) Everywhere Else}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-186659},
  doi =		{10.4230/LIPIcs.ESA.2023.12},
  annote =	{Keywords: TSP, Online algorithms, Learning-augmented algorithms, Algorithms with predictions, Competitive analysis}

Keywords: TSP, Online algorithms, Learning-augmented algorithms, Algorithms with predictions, Competitive analysis
Collection: 31st Annual European Symposium on Algorithms (ESA 2023)
Issue Date: 2023
Date of publication: 30.08.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI