License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2023.17
URN: urn:nbn:de:0030-drops-186705
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18670/
Go to the corresponding LIPIcs Volume Portal


Berger, Aaron ; Kaufmann, Jenny ; Vassilevska Williams, Virginia

Approximating Min-Diameter: Standard and Bichromatic

pdf-format:
LIPIcs-ESA-2023-17.pdf (0.8 MB)


Abstract

The min-diameter of a directed graph G is a measure of the largest distance between nodes. It is equal to the maximum min-distance d_{min}(u,v) across all pairs u,v ∈ V(G), where d_{min}(u,v) = min(d(u,v), d(v,u)). Min-diameter approximation in directed graphs has attracted attention recently as an offshoot of the classical and well-studied diameter approximation problem.
Our work provides a 3/2-approximation algorithm for min-diameter in DAGs running in time O(m^{1.426} n^{0.288}), and a faster almost-3/2-approximation variant which runs in time O(m^{0.713} n). (An almost-α-approximation algorithm determines the min-diameter to within a multiplicative factor of α plus constant additive error.) This is the first known algorithm to solve 3/2-approximation for min-diameter in sparse DAGs in truly subquadratic time O(m^{2-ε}) for ε > 0; previously only a 2-approximation was known. By a conditional lower bound result of [Abboud et al, SODA 2016], a better than 3/2-approximation can't be achieved in truly subquadratic time under the Strong Exponential Time Hypothesis (SETH), so our result is conditionally tight. We additionally obtain a new conditional lower bound for min-diameter approximation in general directed graphs, showing that under SETH, one cannot achieve an approximation factor below 2 in truly subquadratic time.
Our work also presents the first study of approximating bichromatic min-diameter, which is the maximum min-distance between oppositely colored vertices in a 2-colored graph. We show that SETH implies that in DAGs, a better than 2 approximation cannot be achieved in truly subquadratic time, and that in general graphs, an approximation within a factor below 5/2 is similarly out of reach. We then obtain an O(m)-time algorithm which determines if bichromatic min-diameter is finite, and an almost-2-approximation algorithm for bichromatic min-diameter with runtime Õ(min(m^{4/3} n^{1/3}, m^{1/2} n^{3/2})).

BibTeX - Entry

@InProceedings{berger_et_al:LIPIcs.ESA.2023.17,
  author =	{Berger, Aaron and Kaufmann, Jenny and Vassilevska Williams, Virginia},
  title =	{{Approximating Min-Diameter: Standard and Bichromatic}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{17:1--17:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18670},
  URN =		{urn:nbn:de:0030-drops-186705},
  doi =		{10.4230/LIPIcs.ESA.2023.17},
  annote =	{Keywords: diameter, min distances, fine-grained, approximation algorithm}
}

Keywords: diameter, min distances, fine-grained, approximation algorithm
Collection: 31st Annual European Symposium on Algorithms (ESA 2023)
Issue Date: 2023
Date of publication: 30.08.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI