License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2023.20
URN: urn:nbn:de:0030-drops-186737
Go to the corresponding LIPIcs Volume Portal

Bläsius, Thomas ; Friedrich, Tobias ; Katzmann, Maximilian ; Ruff, Janosch ; Zeif, Ziena

On the Giant Component of Geometric Inhomogeneous Random Graphs

LIPIcs-ESA-2023-20.pdf (0.8 MB)


In this paper we study the threshold model of geometric inhomogeneous random graphs (GIRGs); a generative random graph model that is closely related to hyperbolic random graphs (HRGs). These models have been observed to capture complex real-world networks well with respect to the structural and algorithmic properties. Following comprehensive studies regarding their connectivity, i.e., which parts of the graphs are connected, we have a good understanding under which circumstances a giant component (containing a constant fraction of the graph) emerges.
While previous results are rather technical and challenging to work with, the goal of this paper is to provide more accessible proofs. At the same time we significantly improve the previously known probabilistic guarantees, showing that GIRGs contain a giant component with probability 1 - exp(-Ω(n^{(3-τ)/2})) for graph size n and a degree distribution with power-law exponent τ ∈ (2, 3). Based on that we additionally derive insights about the connectivity of certain induced subgraphs of GIRGs.

BibTeX - Entry

  author =	{Bl\"{a}sius, Thomas and Friedrich, Tobias and Katzmann, Maximilian and Ruff, Janosch and Zeif, Ziena},
  title =	{{On the Giant Component of Geometric Inhomogeneous Random Graphs}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{20:1--20:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-186737},
  doi =		{10.4230/LIPIcs.ESA.2023.20},
  annote =	{Keywords: geometric inhomogeneous random graphs, connectivity, giant component}

Keywords: geometric inhomogeneous random graphs, connectivity, giant component
Collection: 31st Annual European Symposium on Algorithms (ESA 2023)
Issue Date: 2023
Date of publication: 30.08.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI