License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2023.23
URN: urn:nbn:de:0030-drops-186769
Go to the corresponding LIPIcs Volume Portal

Bonnet, Édouard ; Duron, Julien ; Geniet, Colin ; Thomassé, Stéphan ; Wesolek, Alexandra

Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄

LIPIcs-ESA-2023-23.pdf (0.9 MB)


Dallard, Milanič, and Štorgel [arXiv '22] ask if, for every class excluding a fixed planar graph H as an induced minor, Maximum Independent Set can be solved in polynomial time, and show that this is indeed the case when H is any planar complete bipartite graph, or the 5-vertex clique minus one edge, or minus two disjoint edges. A positive answer would constitute a far-reaching generalization of the state-of-the-art, when we currently do not know if a polynomial-time algorithm exists when H is the 7-vertex path. Relaxing tractability to the existence of a quasipolynomial-time algorithm, we know substantially more. Indeed, quasipolynomial-time algorithms were recently obtained for the t-vertex cycle, C_t [Gartland et al., STOC '21], and the disjoint union of t triangles, tC₃ [Bonamy et al., SODA '23].
We give, for every integer t, a polynomial-time algorithm running in n^O(t⁵) when H is the friendship graph K₁ + tK₂ (t disjoint edges plus a vertex fully adjacent to them), and a quasipolynomial-time algorithm running in n^{O(t² log n) + f(t)}, with f a single-exponential function, when H is tC₃ ⊎ C₄ (the disjoint union of t triangles and a 4-vertex cycle). The former generalizes the algorithm readily obtained from Alekseev’s structural result on graphs excluding tK₂ as an induced subgraph [Alekseev, DAM '07], while the latter extends Bonamy et al.’s result.

BibTeX - Entry

  author =	{Bonnet, \'{E}douard and Duron, Julien and Geniet, Colin and Thomass\'{e}, St\'{e}phan and Wesolek, Alexandra},
  title =	{{Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-186769},
  doi =		{10.4230/LIPIcs.ESA.2023.23},
  annote =	{Keywords: Maximum Independent Set, forbidden induced minors, quasipolynomial-time algorithms}

Keywords: Maximum Independent Set, forbidden induced minors, quasipolynomial-time algorithms
Collection: 31st Annual European Symposium on Algorithms (ESA 2023)
Issue Date: 2023
Date of publication: 30.08.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI