License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2023.69
URN: urn:nbn:de:0030-drops-187229
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18722/
Go to the corresponding LIPIcs Volume Portal


Katzelnick, Dor ; Pillai, Aditya ; Schwartz, Roy ; Singh, Mohit

An Improved Approximation Algorithm for the Max-3-Section Problem

pdf-format:
LIPIcs-ESA-2023-69.pdf (0.9 MB)


Abstract

We consider the Max--Section problem, where we are given an undirected graph G=(V,E)equipped with non-negative edge weights w: E → R_+ and the goal is to find a partition of V into three equisized parts while maximizing the total weight of edges crossing between different parts. Max-3-Section is closely related to other well-studied graph partitioning problems, e.g., Max-Cut, Max-3-Cut, and Max-Bisection. We present a polynomial time algorithm achieving an approximation of 0.795, that improves upon the previous best known approximation of 0.673. The requirement of multiple parts that have equal sizes renders Max-3-Section much harder to cope with compared to, e.g., Max-Bisection. We show a new algorithm that combines the existing approach of Lassere hierarchy along with a random cut strategy that suffices to give our result.

BibTeX - Entry

@InProceedings{katzelnick_et_al:LIPIcs.ESA.2023.69,
  author =	{Katzelnick, Dor and Pillai, Aditya and Schwartz, Roy and Singh, Mohit},
  title =	{{An Improved Approximation Algorithm for the Max-3-Section Problem}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{69:1--69:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18722},
  URN =		{urn:nbn:de:0030-drops-187229},
  doi =		{10.4230/LIPIcs.ESA.2023.69},
  annote =	{Keywords: Approximation Algorithms, Semidefinite Programming, Max-Cut, Max-Bisection}
}

Keywords: Approximation Algorithms, Semidefinite Programming, Max-Cut, Max-Bisection
Collection: 31st Annual European Symposium on Algorithms (ESA 2023)
Issue Date: 2023
Date of publication: 30.08.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI