License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2023.97
URN: urn:nbn:de:0030-drops-187500
Go to the corresponding LIPIcs Volume Portal

Sun, Enze ; Yang, Zonghan ; Zhang, Yuhao

Improved Algorithms for Online Rent Minimization Problem Under Unit-Size Jobs

LIPIcs-ESA-2023-97.pdf (0.7 MB)


We consider the Online Rent Minimization problem, where online jobs with release times, deadlines, and processing times must be scheduled on machines that can be rented for a fixed length period of T. The objective is to minimize the number of machine rents. This problem generalizes the Online Machine Minimization problem where machines can be rented for an infinite period, and both problems have an asymptotically optimal competitive ratio of O(log(p_max/p_min)) for general processing times, where p_max and p_min are the maximum and minimum processing times respectively. However, for small values of p_max/p_min, a better competitive ratio can be achieved by assuming unit-size jobs. Under this assumption, Devanur et al. (2014) gave an optimal e-competitive algorithm for Online Machine Minimization, and Chen and Zhang (2022) gave a (3e+7) ≈ 15.16-competitive algorithm for Online Rent Minimization. In this paper, we significantly improve the competitive ratio of the Online Rent Minimization problem under unit size to 6, by using a clean oracle-based online algorithm framework.

BibTeX - Entry

  author =	{Sun, Enze and Yang, Zonghan and Zhang, Yuhao},
  title =	{{Improved Algorithms for Online Rent Minimization Problem Under Unit-Size Jobs}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{97:1--97:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-187500},
  doi =		{10.4230/LIPIcs.ESA.2023.97},
  annote =	{Keywords: Online Algorithm, Scheduling, Machine Minimization, Rent Minimization}

Keywords: Online Algorithm, Scheduling, Machine Minimization, Rent Minimization
Collection: 31st Annual European Symposium on Algorithms (ESA 2023)
Issue Date: 2023
Date of publication: 30.08.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI