License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.DNA.29.8
URN: urn:nbn:de:0030-drops-187917
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18791/
Petrack, Joshua ;
Soloveichik, David ;
Doty, David
Thermodynamically Driven Signal Amplification
Abstract
The field of chemical computation attempts to model computational behavior that arises when molecules, typically nucleic acids, are mixed together. By modeling this physical phenomenon at different levels of specificity, different operative computational behavior is observed. Thermodynamic binding networks (TBNs) is a highly abstracted model that focuses on which molecules are bound to each other in a "thermodynamically stable" sense. Stability is measured based only on how many bonds are formed and how many total complexes are in a configuration, without focusing on how molecules are binding or how they became bound. By defocusing on kinetic processes, TBNs attempt to naturally model the long-term behavior of a mixture (i.e., its thermodynamic equilibrium).
We study the problem of signal amplification: detecting a small quantity of some molecule and amplifying its signal to something more easily detectable. This problem has natural applications such as disease diagnosis. By focusing on thermodynamically favored outcomes, we seek to design chemical systems that perform the task of signal amplification robustly without relying on kinetic pathways that can be error prone and require highly controlled conditions (e.g., PCR amplification).
It might appear that a small change in concentrations can result in only small changes to the thermodynamic equilibrium of a molecular system. However, we show that it is possible to design a TBN that can "exponentially amplify" a signal represented by a single copy of a monomer called the analyte: this TBN has exactly one stable state before adding the analyte and exactly one stable state afterward, and those two states "look very different" from each other. In particular, their difference is exponential in the number of types of molecules and their sizes. The system can be programmed to any desired level of resilience to false positives and false negatives. To prove these results, we introduce new concepts to the TBN model, particularly the notions of a TBN’s entropy gap to describe how unlikely it is to be observed in an undesirable state, and feed-forward TBNs that have a strong upper bound on the number of polymers in a stable configuration.
We also show a corresponding negative result: a doubly exponential upper bound, meaning that there is no TBN that can amplify a signal by an amount more than doubly exponential in the number and sizes of different molecules that comprise it. We leave as an open question to close this gap by either proving an exponential upper bound, or giving a construction with a doubly-exponential difference between the stable configurations before and after the analyte is added.
Our work informs the fundamental question of how a thermodynamic equilibrium can change as a result of a small change to the system (adding a single molecule copy). While exponential amplification is traditionally viewed as inherently a non-equilibrium phenomenon, we find that in a strong sense exponential amplification can occur at thermodynamic equilibrium as well - where the "effect" (e.g., fluorescence) is exponential in types and complexity of the chemical components.
BibTeX - Entry
@InProceedings{petrack_et_al:LIPIcs.DNA.29.8,
author = {Petrack, Joshua and Soloveichik, David and Doty, David},
title = {{Thermodynamically Driven Signal Amplification}},
booktitle = {29th International Conference on DNA Computing and Molecular Programming (DNA 29)},
pages = {8:1--8:22},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-297-6},
ISSN = {1868-8969},
year = {2023},
volume = {276},
editor = {Chen, Ho-Lin and Evans, Constantine G.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2023/18791},
URN = {urn:nbn:de:0030-drops-187917},
doi = {10.4230/LIPIcs.DNA.29.8},
annote = {Keywords: Thermodynamic binding networks, signal amplification, integer programming}
}
Keywords: |
|
Thermodynamic binding networks, signal amplification, integer programming |
Collection: |
|
29th International Conference on DNA Computing and Molecular Programming (DNA 29) |
Issue Date: |
|
2023 |
Date of publication: |
|
04.09.2023 |