License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CALCO.2023.9
URN: urn:nbn:de:0030-drops-188067
Go to the corresponding LIPIcs Volume Portal

Milosavljević, Aleksandar ; Piedeleu, Robin ; Zanasi, Fabio

String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

LIPIcs-CALCO-2023-9.pdf (0.8 MB)


String diagrams constitute an intuitive and expressive graphical syntax that has found application in a very diverse range of fields including concurrency theory, quantum computing, control theory, machine learning, linguistics, and digital circuits. Rewriting theory for string diagrams relies on a combinatorial interpretation as double-pushout rewriting of certain hypergraphs. As previously studied, there is a "tension" in this interpretation: in order to make it sound and complete, we either need to add structure on string diagrams (in particular, Frobenius algebra structure) or pose restrictions on double-pushout rewriting (resulting in "convex" rewriting). From the string diagram viewpoint, imposing a full Frobenius structure may not always be natural or desirable in applications, which motivates our study of a weaker requirement: commutative monoid structure. In this work we characterise string diagram rewriting modulo commutative monoid equations, via a sound and complete interpretation in a suitable notion of double-pushout rewriting of hypergraphs.

BibTeX - Entry

  author =	{Milosavljevi\'{c}, Aleksandar and Piedeleu, Robin and Zanasi, Fabio},
  title =	{{String Diagram Rewriting Modulo Commutative (Co)Monoid Structure}},
  booktitle =	{10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-287-7},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{270},
  editor =	{Baldan, Paolo and de Paiva, Valeria},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-188067},
  doi =		{10.4230/LIPIcs.CALCO.2023.9},
  annote =	{Keywords: String diagrams, Double-pushout rewriting, Commutative monoid}

Keywords: String diagrams, Double-pushout rewriting, Commutative monoid
Collection: 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)
Issue Date: 2023
Date of publication: 02.09.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI