License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2023.10
URN: urn:nbn:de:0030-drops-188351
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18835/
Go to the corresponding LIPIcs Volume Portal


Golovnev, Alexander ; Guo, Siyao ; Peters, Spencer ; Stephens-Davidowitz, Noah

The (Im)possibility of Simple Search-To-Decision Reductions for Approximation Problems

pdf-format:
LIPIcs-APPROX10.pdf (0.7 MB)


Abstract

We study the question of when an approximate search optimization problem is harder than the associated decision problem. Specifically, we study a natural and quite general model of black-box search-to-decision reductions, which we call branch-and-bound reductions (in analogy with branch-and-bound algorithms). In this model, an algorithm attempts to minimize (or maximize) a function f: D → ℝ_{≥ 0} by making oracle queries to h_f : ? → ℝ_{≥ 0} satisfying
min_{x ∈ S} f(x) ≤ h_f(S) ≤ γ ⋅ min_{x ∈ S} f(x) (*)
for some γ ≥ 1 and any subset S in some allowed class of subsets ? of the domain D. (When the goal is to maximize f, h_f instead yields an approximation to the maximal value of f over S.) We show tight upper and lower bounds on the number of queries q needed to find even a γ'-approximate minimizer (or maximizer) for quite large γ' in a number of interesting settings, as follows.
- For arbitrary functions f : {0,1}ⁿ → ℝ_{≥ 0}, where ? contains all subsets of the domain, we show that no branch-and-bound reduction can achieve γ' ≲ γ^{n/log q}, while a simple greedy approach achieves essentially γ^{n/log q}.
- For a large class of MAX-CSPs, where ? := {S_w} contains each set of assignments to the variables induced by a partial assignment w, we show that no branch-and-bound reduction can do significantly better than essentially a random guess, even when the oracle h_f guarantees an approximation factor of γ ≈ 1+√{log(q)/n}.
- For the Traveling Salesperson Problem (TSP), where ? := {S_p} contains each set of tours extending a path p, we show that no branch-and-bound reduction can achieve γ' ≲ (γ-1) n/log q. We also prove a nearly matching upper bound in our model.
These results show an oracle model in which approximate search and decision are strongly separated. (In particular, our result for TSP can be viewed as a negative answer to a question posed by Bellare and Goldwasser (SIAM J. Comput. 1994), though only in an oracle model.) We also note two alternative interpretations of our results. First, if we view h_f as a data structure, then our results unconditionally rule out black-box search-to-decision reductions for certain data structure problems. Second, if we view h_f as an efficiently computable heuristic, then our results show that any reasonably efficient branch-and-bound algorithm requires more guarantees from its heuristic than simply Eq. (*).
Behind our results is a "useless oracle lemma," which allows us to argue that under certain conditions the oracle h_f is "useless," and which might be of independent interest. See also the full version [Alexander Golovnev et al., 2022].

BibTeX - Entry

@InProceedings{golovnev_et_al:LIPIcs.APPROX/RANDOM.2023.10,
  author =	{Golovnev, Alexander and Guo, Siyao and Peters, Spencer and Stephens-Davidowitz, Noah},
  title =	{{The (Im)possibility of Simple Search-To-Decision Reductions for Approximation Problems}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18835},
  URN =		{urn:nbn:de:0030-drops-188351},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.10},
  annote =	{Keywords: search-to-decision reductions, oracles, constraint satisfaction, traveling salesman, discrete optimization}
}

Keywords: search-to-decision reductions, oracles, constraint satisfaction, traveling salesman, discrete optimization
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)
Issue Date: 2023
Date of publication: 04.09.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI