License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2023.14
URN: urn:nbn:de:0030-drops-188396
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18839/
Bansal, Ishan ;
Cheriyan, Joe ;
Grout, Logan ;
Ibrahimpur, Sharat
Algorithms for 2-Connected Network Design and Flexible Steiner Trees with a Constant Number of Terminals
Abstract
The k-Steiner-2NCS problem is as follows: Given a constant (positive integer) k, and an undirected connected graph G = (V,E), non-negative costs c on the edges, and a partition (T, V⧵T) of V into a set of terminals, T, and a set of non-terminals (or, Steiner nodes), where |T| = k, find a min-cost two-node connected subgraph that contains the terminals. The k-Steiner-2ECS problem has the same inputs; the algorithmic goal is to find a min-cost two-edge connected subgraph that contains the terminals.
We present a randomized polynomial-time algorithm for the unweighted k-Steiner-2NCS problem, and a randomized FPTAS for the weighted k-Steiner-2NCS problem. We obtain similar results for a capacitated generalization of the k-Steiner-2ECS problem.
Our methods build on results by Björklund, Husfeldt, and Taslaman (SODA 2012) that give a randomized polynomial-time algorithm for the unweighted k-Steiner-cycle problem; this problem has the same inputs as the unweighted k-Steiner-2NCS problem, and the algorithmic goal is to find a min-cost simple cycle C that contains the terminals (C may contain any number of Steiner nodes).
BibTeX - Entry
@InProceedings{bansal_et_al:LIPIcs.APPROX/RANDOM.2023.14,
author = {Bansal, Ishan and Cheriyan, Joe and Grout, Logan and Ibrahimpur, Sharat},
title = {{Algorithms for 2-Connected Network Design and Flexible Steiner Trees with a Constant Number of Terminals}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
pages = {14:1--14:14},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-296-9},
ISSN = {1868-8969},
year = {2023},
volume = {275},
editor = {Megow, Nicole and Smith, Adam},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2023/18839},
URN = {urn:nbn:de:0030-drops-188396},
doi = {10.4230/LIPIcs.APPROX/RANDOM.2023.14},
annote = {Keywords: Approximation algorithms, Capacitated network design, Network design, Parametrized algorithms, Steiner cycle problem, Steiner 2-edge connected subgraphs, Steiner 2-node connected subgraphs}
}
Keywords: |
|
Approximation algorithms, Capacitated network design, Network design, Parametrized algorithms, Steiner cycle problem, Steiner 2-edge connected subgraphs, Steiner 2-node connected subgraphs |
Collection: |
|
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023) |
Issue Date: |
|
2023 |
Date of publication: |
|
04.09.2023 |