License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2023.20
URN: urn:nbn:de:0030-drops-188459
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18845/
Go to the corresponding LIPIcs Volume Portal


Kashaev, Danish ; Schäfer, Guido

Round and Bipartize for Vertex Cover Approximation

pdf-format:
LIPIcs-APPROX20.pdf (0.9 MB)


Abstract

The vertex cover problem is a fundamental and widely studied combinatorial optimization problem. It is known that its standard linear programming relaxation is integral for bipartite graphs and half-integral for general graphs. As a consequence, the natural rounding algorithm based on this relaxation computes an optimal solution for bipartite graphs and a 2-approximation for general graphs. This raises the question of whether one can interpolate the rounding curve of the standard linear programming relaxation in a beyond the worst-case manner, depending on how close the graph is to being bipartite. In this paper, we consider a round-and-bipartize algorithm that exploits the knowledge of an induced bipartite subgraph to attain improved approximation ratios. Equivalently, we suppose that we work with a pair (?, S), consisting of a graph with an odd cycle transversal.
If S is a stable set, we prove a tight approximation ratio of 1 + 1/ρ, where 2ρ -1 denotes the odd girth (i.e., length of the shortest odd cycle) of the contracted graph ?̃ : = ?/S and satisfies ρ ∈ [2,∞], with ρ = ∞ corresponding to the bipartite case. If S is an arbitrary set, we prove a tight approximation ratio of (1+1/ρ) (1 - α) + 2 α, where α ∈ [0,1] is a natural parameter measuring the quality of the set S. The technique used to prove tight improved approximation ratios relies on a structural analysis of the contracted graph ?̃, in combination with an understanding of the weight space where the fully half-integral solution is optimal. Tightness is shown by constructing classes of weight functions matching the obtained upper bounds. As a byproduct of the structural analysis, we also obtain improved tight bounds on the integrality gap and the fractional chromatic number of 3-colorable graphs. We also discuss algorithmic applications in order to find good odd cycle transversals, connecting to the MinUncut and Colouring problems. Finally, we show that our analysis is optimal in the following sense: the worst case bounds for ρ and α, which are ρ = 2 and α = 1 - 4/n, recover the integrality gap of 2 - 2/n of the standard linear programming relaxation, where n is the number of vertices of the graph.

BibTeX - Entry

@InProceedings{kashaev_et_al:LIPIcs.APPROX/RANDOM.2023.20,
  author =	{Kashaev, Danish and Sch\"{a}fer, Guido},
  title =	{{Round and Bipartize for Vertex Cover Approximation}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18845},
  URN =		{urn:nbn:de:0030-drops-188459},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.20},
  annote =	{Keywords: Combinatorial optimization, approximation algorithms, rounding algorithms, beyond the worst-case analysis}
}

Keywords: Combinatorial optimization, approximation algorithms, rounding algorithms, beyond the worst-case analysis
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)
Issue Date: 2023
Date of publication: 04.09.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI