License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/DagSemProc.08491.3
URN: urn:nbn:de:0030-drops-18908
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2009/1890/
Go to the corresponding Portal |
Canetti, Ran ;
Cheung, Ling ;
Kaynar, Dilsun ;
Lynch, Nancy ;
Pereira, Olivier
Modeling Computational Security in Long-Lived Systems
Abstract
For many cryptographic protocols, security relies on the assumption
that adversarial entities have limited computational power.
This type of security degrades progressively over the lifetime of a protocol.
However, some cryptographic services, such as timestamping services or
digital archives, are emph{long-lived} in nature; they are expected to be
secure and operational for a very long time (ie super-polynomial).
In such cases, security cannot be guaranteed in the traditional sense:
a computationally secure protocol may become insecure if the attacker
has a super-polynomial number of interactions with the protocol.
This paper proposes a new paradigm for the analysis of long-lived
security protocols.
We allow entities to be active for a potentially unbounded amount of
real time, provided they perform only a polynomial amount of work emph{per
unit of real time}.
Moreover, the space used by these entities is allocated dynamically and must be
polynomially bounded.
We propose a new notion of emph{long-term implementation}, which is an
adaptation of computational indistinguishability to the long-lived
setting.
We show that long-term implementation is preserved under polynomial parallel
composition and exponential sequential composition.
We illustrate the use of this new paradigm by analyzing some security
properties of the long-lived timestamping protocol of Haber and Kamat.
BibTeX - Entry
@InProceedings{canetti_et_al:DagSemProc.08491.3,
author = {Canetti, Ran and Cheung, Ling and Kaynar, Dilsun and Lynch, Nancy and Pereira, Olivier},
title = {{Modeling Computational Security in Long-Lived Systems}},
booktitle = {Theoretical Foundations of Practical Information Security},
series = {Dagstuhl Seminar Proceedings (DagSemProc)},
ISSN = {1862-4405},
year = {2009},
volume = {8491},
editor = {Ran Canetti and Shafi Goldwasser and G\"{u}nter M\"{u}ller and Rainer Steinwandt},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2009/1890},
URN = {urn:nbn:de:0030-drops-18908},
doi = {10.4230/DagSemProc.08491.3},
annote = {Keywords: Long lived security; universally composable security;}
}
Keywords: |
|
Long lived security; universally composable security; |
Collection: |
|
08491 - Theoretical Foundations of Practical Information Security |
Issue Date: |
|
2009 |
Date of publication: |
|
27.02.2009 |