License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.GIScience.2023.7
URN: urn:nbn:de:0030-drops-189028
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18902/
Go to the corresponding LIPIcs Volume Portal


Li, Hao ; Yuan, Zhendong ; Dax, Gabriel ; Kong, Gefei ; Fan, Hongchao ; Zipf, Alexander ; Werner, Martin

Semi-Supervised Learning from Street-View Images and OpenStreetMap for Automatic Building Height Estimation

pdf-format:
LIPIcs-GIScience-2023-7.pdf (5 MB)


Abstract

Accurate building height estimation is key to the automatic derivation of 3D city models from emerging big geospatial data, including Volunteered Geographical Information (VGI). However, an automatic solution for large-scale building height estimation based on low-cost VGI data is currently missing. The fast development of VGI data platforms, especially OpenStreetMap (OSM) and crowdsourced street-view images (SVI), offers a stimulating opportunity to fill this research gap. In this work, we propose a semi-supervised learning (SSL) method of automatically estimating building height from Mapillary SVI and OSM data to generate low-cost and open-source 3D city modeling in LoD1. The proposed method consists of three parts: first, we propose an SSL schema with the option of setting a different ratio of "pseudo label" during the supervised regression; second, we extract multi-level morphometric features from OSM data (i.e., buildings and streets) for the purposed of inferring building height; last, we design a building floor estimation workflow with a pre-trained facade object detection network to generate "pseudo label" from SVI and assign it to the corresponding OSM building footprint. In a case study, we validate the proposed SSL method in the city of Heidelberg, Germany and evaluate the model performance against the reference data of building heights. Based on three different regression models, namely Random Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN), the SSL method leads to a clear performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1 meters, which is competitive to state-of-the-art approaches. The preliminary result is promising and motivates our future work in scaling up the proposed method based on low-cost VGI data, with possibilities in even regions and areas with diverse data quality and availability.

BibTeX - Entry

@InProceedings{li_et_al:LIPIcs.GIScience.2023.7,
  author =	{Li, Hao and Yuan, Zhendong and Dax, Gabriel and Kong, Gefei and Fan, Hongchao and Zipf, Alexander and Werner, Martin},
  title =	{{Semi-Supervised Learning from Street-View Images and OpenStreetMap for Automatic Building Height Estimation}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18902},
  URN =		{urn:nbn:de:0030-drops-189028},
  doi =		{10.4230/LIPIcs.GIScience.2023.7},
  annote =	{Keywords: OpenStreetMap, Street-view Images, VGI, GeoAI, 3D city model, Facade parsing}
}

Keywords: OpenStreetMap, Street-view Images, VGI, GeoAI, 3D city model, Facade parsing
Collection: 12th International Conference on Geographic Information Science (GIScience 2023)
Issue Date: 2023
Date of publication: 07.09.2023
Supplementary Material: Software (Data and code supporting this paper): https://github.com/bobleegogogo/building_height archived at: https://archive.softwareheritage.org/swh:1:dir:1731a2bf38d083320ed151eefd51b4c6686c3f7c


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI