License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.GIScience.2023.33
URN: urn:nbn:de:0030-drops-189286
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2023/18928/
Go to the corresponding LIPIcs Volume Portal


Gao, Xiaowei ; Haworth, James ; Zhuang, Dingyi ; Chen, Huanfa ; Jiang, Xinke

Uncertainty Quantification in the Road-Level Traffic Risk Prediction by Spatial-Temporal Zero-Inflated Negative Binomial Graph Neural Network(STZINB-GNN) (Short Paper)

pdf-format:
LIPIcs-GIScience-2023-33.pdf (4 MB)


Abstract

Urban road-based risk prediction is a crucial yet challenging aspect of research in transportation safety. While most existing studies emphasize accurate prediction, they often overlook the importance of model uncertainty. In this paper, we introduce a novel Spatial-Temporal Zero-Inflated Negative Binomial Graph Neural Network (STZINB-GNN) for road-level traffic risk prediction, with a focus on uncertainty quantification. Our case study, conducted in the Lambeth borough of London, UK, demonstrates the superior performance of our approach in comparison to existing methods. Although the negative binomial distribution may not be the most suitable choice for handling real, non-binary risk levels, our work lays a solid foundation for future research exploring alternative distribution models or techniques. Ultimately, the STZINB-GNN contributes to enhanced transportation safety and data-driven decision-making in urban planning by providing a more accurate and reliable framework for road-level traffic risk prediction and uncertainty quantification.

BibTeX - Entry

@InProceedings{gao_et_al:LIPIcs.GIScience.2023.33,
  author =	{Gao, Xiaowei and Haworth, James and Zhuang, Dingyi and Chen, Huanfa and Jiang, Xinke},
  title =	{{Uncertainty Quantification in the Road-Level Traffic Risk Prediction by Spatial-Temporal Zero-Inflated Negative Binomial Graph Neural Network(STZINB-GNN)}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{33:1--33:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18928},
  URN =		{urn:nbn:de:0030-drops-189286},
  doi =		{10.4230/LIPIcs.GIScience.2023.33},
  annote =	{Keywords: Traffic Risk Prediction, Uncertainty Quantification, Zero-Inflated Issues, Road Safety}
}

Keywords: Traffic Risk Prediction, Uncertainty Quantification, Zero-Inflated Issues, Road Safety
Collection: 12th International Conference on Geographic Information Science (GIScience 2023)
Issue Date: 2023
Date of publication: 07.09.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI