License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CONCUR.2023.21
URN: urn:nbn:de:0030-drops-190153
Go to the corresponding LIPIcs Volume Portal

Bartocci, Ezio ; Henzinger, Thomas A. ; Nickovic, Dejan ; Oliveira da Costa, Ana

Hypernode Automata

LIPIcs-CONCUR-2023-21.pdf (0.8 MB)


We introduce hypernode automata as a new specification formalism for hyperproperties of concurrent systems. They are finite automata with nodes labeled with hypernode logic formulas and transitions labeled with actions. A hypernode logic formula specifies relations between sequences of variable values in different system executions. Unlike HyperLTL, hypernode logic takes an asynchronous view on execution traces by constraining the values and the order of value changes of each variable without correlating the timing of the changes. Different execution traces are synchronized solely through the transitions of hypernode automata. Hypernode automata naturally combine asynchronicity at the node level with synchronicity at the transition level. We show that the model-checking problem for hypernode automata is decidable over action-labeled Kripke structures, whose actions induce transitions of the specification automata. For this reason, hypernode automaton is a suitable formalism for specifying and verifying asynchronous hyperproperties, such as declassifying observational determinism in multi-threaded programs.

BibTeX - Entry

  author =	{Bartocci, Ezio and Henzinger, Thomas A. and Nickovic, Dejan and Oliveira da Costa, Ana},
  title =	{{Hypernode Automata}},
  booktitle =	{34th International Conference on Concurrency Theory (CONCUR 2023)},
  pages =	{21:1--21:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-299-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{279},
  editor =	{P\'{e}rez, Guillermo A. and Raskin, Jean-Fran\c{c}ois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-190153},
  doi =		{10.4230/LIPIcs.CONCUR.2023.21},
  annote =	{Keywords: Hyperproperties, Asynchronous, Automata, Logic}

Keywords: Hyperproperties, Asynchronous, Automata, Logic
Collection: 34th International Conference on Concurrency Theory (CONCUR 2023)
Issue Date: 2023
Date of publication: 07.09.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI